Rajesh Nandy

Learn More
The major disadvantage of hierarchical clustering in fMRI data analysis is that an appropriate clustering threshold needs to be specified. Upon grouping data into a hierarchical tree, clusters are identified either by specifying their number or by choosing an appropriate inconsistency coefficient. Since the number of clusters present in the data is not(More)
One of the most important considerations in any hypothesis based fMRI data analysis is to choose the appropriate threshold to construct the activation maps, which is usually based on p-values. However, in fMRI data, there are three factors which necessitate severe corrections in the process of estimating the p-values. First, the fMRI time series at an(More)
A noisy version of independent component analysis (noisy ICA) is applied to simulated and real functional magnetic resonance imaging (fMRI) data. The noise covariance is explicitly modeled by an autoregressive (AR) model of order 1. The unmixing matrix of the data is determined using a variant of the FastICA algorithm based on Gaussian moments. The sources(More)
Local canonical correlation analysis (CCA) is a multivariate method that has been proposed to more accurately determine activation patterns in fMRI data. In its conventional formulation, CCA has several drawbacks that limit its usefulness in fMRI. A major drawback is that, unlike the general linear model (GLM), a test of general linear contrasts of the(More)
The contrast-to-noise ratio (CNR) is often very low in fMRI data, and standard univariate methods suffer from a loss of sensitivity in the context of noise. The increased power of a multivariate statistical analysis method known as canonical correlation analysis (CCA) in fMRI studies with low CNR was established previously. However, CCA in its conventional(More)
The benefits of locally adaptive statistical methods for fMRI research have been shown in recent years, as these methods are more proficient in detecting brain activations in a noisy environment. One such method is local canonical correlation analysis (CCA), which investigates a group of neighboring voxels instead of looking at the single voxel time course.(More)
Recent progress in the experimental design for event-related fMRI experiments made it possible to find the optimal stimulus sequence for maximum contrast detection power using a genetic algorithm. In this study, a novel algorithm is proposed for optimization of contrast detection power by including probabilistic behavioral information, based on pilot data,(More)
It has recently been shown that both high-frequency and low-frequency cardiac and respiratory noise sources exist throughout the entire brain and can cause significant signal changes in fMRI data. It is also known that the brainstem, basal forebrain and spinal cord areas are problematic for fMRI because of the magnitude of cardiac-induced pulsations at(More)
A wide range of studies show the capacity of multivariate statistical methods for fMRI to improve mapping of brain activations in a noisy environment. An advanced method uses local canonical correlation analysis (CCA) to encompass a group of neighboring voxels instead of looking at the single voxel time course. The value of a suitable test statistic is used(More)
  • 1