Rajendran Panda

Learn More
<italic>Careful design and verification of the power distribution network of a chip are of critical importance to ensure its reliable performance. With the increasing number of transistors on a chip, the size of the power network has grown so large as to make the verification task very challenging. The available computational power and memory resources(More)
Process variation has become a significant concern for static timing analysis. In this paper, we present a new method for path-based statistical timing analysis. We first propose a method for modeling inter- and intra-die device length variations. Based on this model, we then present an efficient method for computing the total path delay probability(More)
We present a methodology for the design and analysis of power grids in the PowerPC&#8482; microprocessors. The methodology covers the need for power grid analysis across all stages of the design process. A case study showing the application of this methodology to the PowerPC&#8482; 750 microprocessor is presented.
We present a new approach for estimation and optimization of the average stand-by power dissipation in large MOS digital circuits. To overcome the complexity of state dependence in average leakage estimation, we introduce the concept of “dominant leakage states” and use state probabilities. Our method achieves speed-ups of 3 to 4 orders of magnitude over(More)
We present a new approach for the estimation and optimization of standby power dissipation in large MOS digital circuits. We first introduce a new approach for accurate and efficient calculation of the average standby or leakage current in large digital circuits by introducing the concepts of “dominant leakage states” and the use of state probabilities.(More)
In this paper, we investigate the impact of interconnect and device process variations on voltage fluctuations in power grids. We consider random variations in the power grid's electrical parameters as spatial stochastic processes and propose a new and efficient method to compute the stochastic voltage response of the power grid. Our approach provides an(More)
Noise estimation and avoidance are becoming critical,must have' capabilities in today's high performance IC design.An accurate yet efficient crosstalk noise model whichcontains as many driver/interconnect parameters as possible,is neccesary for any sensitivity based noise avoidanceapproach. In this paper, we present a complete analyticalcrosstalk noise(More)
Noise analysis has become a critical concern in advanced chip designs. Traditional methods suffer from two common issues. First, noise that is propagated through the driver of a net is combined with noise injected by capacitively coupled aggressor nets using linear summation. Since this ignores the non-linear behavior of the driver gate the noise that(More)
Static timing analysis has traditionally used the PERT method for identifying the critical path of a digital circuit. Due to the influence of the slope of a signal at a particular node on the subsequent path delay, an earlier signal with a signal slope greater than the slope of the later signal may result in a greater delay. Therefore, the traditional(More)
<italic>With operating frequencies approaching the gigahertz range, inductance is becoming an increasingly important consideration in the design and analysis of on-chip interconnect. We present an accurate technique for modeling and analyzing the effects of parasitic inductance on power grid noise, signal delay and crosstalk. We propose a detailed circuit(More)