Rajendra Prasad

Learn More
Synthesis of DNA by DNA polymerase-beta is distributive on single-stranded DNA templates, but short DNA gaps with a 5' PO4 in the gap are filled processively to completion. In vitro studies have suggested a role of beta-polymerase in different types of DNA repair. However, the significance of these studies to the in vivo role of beta-polymerase has remained(More)
Small DNA lesions such as oxidized or alkylated bases are repaired by the base excision repair (BER) pathway. BER includes removal of the damaged base by a lesion-specific DNA glycosylase, strand scission by apurinic/apyrimidinic endonuclease, DNA resynthesis and ligation. BER may be further subdivided into DNA beta-polymerase (beta-pol)-dependent(More)
DNA polymerase beta (pol beta) fills single nucleotide (nt) gaps in DNA produced by the base excision repair pathway of mammalian cells. Crystal structures have been determined representing intermediates in the 1 nt gap-filling reaction of pol beta: the binary complex with a gapped DNA substrate (2.4 A resolution), the ternary complex including ddCTP (2.2(More)
BACKGROUND Verbal autopsy methods are critically important for evaluating the leading causes of death in populations without adequate vital registration systems. With a myriad of analytical and data collection approaches, it is essential to create a high quality validation dataset from different populations to evaluate comparative method performance and(More)
In mammalian cells, single-base lesions, such as uracil and abasic sites, appear to be repaired by at least two base excision repair (BER) subpathways: "single-nucleotide BER" requiring DNA synthesis of just one nucleotide and "long patch BER" requiring multi-nucleotide DNA synthesis. In single-nucleotide BER, DNA polymerase beta (beta-pol) accounts for(More)
We have used fluorescent 7-nitrobenz-2-oxa-1,3-diazol-4-yl (NBD)-tagged phospholipid analogues, NBD-PE (phosphatidylethanolamine), NBD-PC (phosphatidylcholine) and NBD-PS (phosphatidylserine), to demonstrate that Cdr1p and its other homologues, Cdr2p and Cdr3p, belonging to the ATP-binding cassette (ABC) superfamily behave as general phospholipid(More)
The effect of ethanol on exponential phase cultures of S. cerevisiae has been examined using l-alanine uptake and proton efflux as indices of ethanol tolerance. Preincubation with 2 M ethanol inhibited l-alanine uptake, proton efflux and fermentation rates. However, the effect of ethanol varied in yeast cells enriched with different fatty acyl residues. It(More)
Base excision repair (BER) is one of the cellular defense mechanisms repairing damage to nucleoside 5'-monophosphate residues in genomic DNA. This repair pathway is initiated by spontaneous or enzymatic N-glycosidic bond cleavage creating an abasic or apurinic-apyrimidinic (AP) site in double-stranded DNA. Class II AP endonuclease, deoxyribonucleotide(More)
By functional complementation of a PDR5 null mutant of Saccharomyces cervisiae, we have cloned and sequenced the multidrug-resistance gene CDR1 of Candida albicans. Transformation by CDR1 of a PDR5-disrupted host hypersensitive to cycloheximide and chloramphenicol resulted in resistance to cycloheximide, chloramphenicol and other drugs, such as the(More)
The paradigm for repair of oxidized base lesions in genomes via the base excision repair (BER) pathway is based on studies in Escherichia coli, in which AP endonuclease (APE) removes all 3' blocking groups (including 3' phosphate) generated by DNA glycosylase/AP lyases after base excision. The recently discovered mammalian DNA glycosylase/AP lyases, NEIL1(More)