Learn More
Future processors will likely have large on-chip caches with a possibility of dedicating an entire die for on-chip storage in a 3D stacked design. With the ever growing disparity between transistor and wire delay, the properties of such large caches will primarily depend on the characteristics of the interconnection networks that connect various sub-modules(More)
A significant part of future microprocessor real estate will be dedicated to L2 or L3 caches. These on-chip caches will heavily impact processor perfor- mance, power dissipation, and thermal management strategies. There are a number of interconnect design considerations that influence power/performance/area characteristics of large caches, such as wire mod-(More)
Future processors will likely have large on-chip caches with a possibility of dedicating an entire die for on-chip storage in a 3D stacked model. With the ever growing disparity between transistor and wire delay, the properties of such large caches will primarily depend on the characteristics of the interconnection networks that connect various sub-modules(More)
DRAM vendors have traditionally optimized the cost-per-bit metric, often making design decisions that incur energy penalties. A prime example is the overfetch feature in DRAM, where a single request activates thousands of bit-lines in many DRAM chips, only to return a single cache line to the CPU. The focus on cost-per-bit is questionable in modern-day(More)
Conventional microarchitectures choose a single memory hierarchy design point targeted at the average application. In this paper, we propose a cache and TLB layout and design that leverages repeater insertion to provide dynamic low-cost configurability trading off size and speed on a per application phase basis. A novel configuration management algorithm(More)
As clock frequency increases and feature size decreases, clock distribution and wire delays present a growing challenge to the designers of singly-clocked, globally synchronous systems. We describe an alternative approach, which we call a Multiple Clock Domain (MCD) processor, in which the chip is divided into several (coarse-grained) clock domains, within(More)
While Processing-in-Memory has been investigated for decades, it has not been embraced commercially. A number of emerging technologies have renewed interest in this topic. In particular, the emergence of 3D stacking and the imminent release of Micron's Hybrid Memory Cube device have made it more practical to move computation near memory. However, the(More)
Memory system reliability is a serious and growing concern in modern servers. Existing chipkill-level memory protection mechanisms suffer from several drawbacks. They activate a large number of chips on every memory access -- this increases energy consumption, and reduces performance due to the reduction in rank-level parallelism. Additionally, they(More)
A number of recent efforts have attempted to design accelerators for popular machine learning algorithms, such as those involving convolutional and deep neural networks (CNNs and DNNs). These algorithms typically involve a large number of multiply-accumulate (dot-product) operations. A recent project, DaDianNao, adopts a near data processing approach, where(More)