Rajat K Bhaduri

Learn More
We consider a small and fixed number of fermions in a trap. The ground state of the system is defined at T=0. For a given excitation energy, there are several ways of exciting the particles from this ground state. We formulate a method for calculating the number fluctuation in the ground state using microcanonical counting, and implement it for(More)
It is suggested that for a Fermi gas at unitarity, the two-body bond plays a special role. We propose an equation of state using an ansatz relating the interaction part of the l-body cluster to its two-body counterpart. This allows a parameter-free comparison with the recently measured equation of state by the ENS group. The agreement between the two over a(More)
We present a numerical study of Riemann's formula for the oscillating part of the density of the primes and their integer powers. The formula consists of an infinite series of oscillatory terms, one for each zero of the zeta function on the critical line, and was derived by Riemann in his paper on primes, assuming the Riemann hypothesis. We show that(More)
We consider N particles interacting pair-wise by an inverse square potential in one dimension (Calogero-Sutherland-Moser model). When trapped harmonically, its classical canonical partition function for the repulsive regime is known in the literature. We start by presenting a concise re-derivation of this result. The equation of state is then calculated(More)
We consider N bosons occupying a discrete set of single-particle quantum states in an isolated trap. Usually, for a given excitation energy, there are many combinations of exciting different number of particles from the ground state, resulting in a fluctuation of the ground state population. As a counterexample, we take the quantum spectrum to be logarithms(More)
In this paper, we discuss P(n), the number of ways a given integer n may be written as a sum of primes. In particular, an asymptotic form P_{as}(n) valid for n→∞ is obtained analytically using standard techniques of quantum statistical mechanics. First, the bosonic partition function of primes, or the generating function of unrestricted prime partitions in(More)
  • 1