Rajat Bindlish

Learn More
Validation is an important and particularly challenging task for remote sensing of soil moisture. A key issue in the validation of soil moisture products is the disparity in spatial scales between satellite and in situ observations. Conventional measurements of soil moisture are made at a point, whereas satellite sensors provide an integrated area/volume(More)
[1] Using existing data sets of spaceborne soil moisture retrievals, streamflow and precipitation for 26 basins in the United States Southern Great Plains, a 5-year analysis is performed to quantify the value of soil moisture retrievals derived from the Tropical Rainfall Measuring Mission (TRMM) Microwave Imager (TMI) X-band (10.7 GHz) radiometer for(More)
Estimation of soil moisture at large scale has been performed using several satellite-based passive microwave sensors and a variety of retrieval methods over the past two decades. The most recent source of soil moisture is the European Space Agency Soil Moisture and Ocean Salinity (SMOS) mission. A thorough validation must be conducted to insure product(More)
A physically based six-channel land algorithm is developed to simultaneously retrieve global soil moisture (SM), vegetation water content (VWC), and land surface temperature. The algorithm is based on maximum-likelihood estimation and uses dual-polarization WindSat passive microwave data at 10, 18.7, and 37 GHz. The global retrievals are validated at(More)
Soil Moisture Experiment 2003 (SMEX03) was the second in a series of field campaigns using the National Oceanic and Atmospheric Administration Polarimetric Scanning Radiometer (PSR/CX) designed to validate brightness temperature (TB) data and soil moisture retrieval algorithms for the Advanced Microwave Scanning Radiometer (AMSR-E) for the Earth Observing(More)
An important research direction in advancing higher spatial resolution and better accuracy in soil moisture remote sensing is the integration of active and passive microwave observations. In an effort to address this objective, an airborne instrument, the passive/active L-band sensor (PALS), was flown over two watersheds as part of the cloud and land(More)
During the 1997 Southern Great Plains Hydrology Experiment (SGP97), passive microwave observations using the L-band electronically scanned thinned array radiometer (ESTAR) were used to extend surface soil moisture retrieval algorithms to coarser resolutions and larger regions with more diverse conditions. This near-surface soil moisture product ( ) at 800 m(More)