Rajappa S. Kenchappa

Learn More
Seizure-induced damage elicits a loss of hippocampal neurons mediated to a great extent by the p75 neurotrophin receptor (NTR). Proneurotrophins, which are potent apoptosis-inducing ligands for p75(NTR), were increased in the hippocampus, particularly in astrocytes, by pilocarpine-induced seizures; and infusion of anti-pro-NGF dramatically attenuated(More)
Ligand-mediated dimerization has emerged as a universal mechanism of growth factor receptor activation. Neurotrophins interact with dimers of the p75 neurotrophin receptor (p75(NTR)), but the mechanism of receptor activation has remained elusive. Here, we show that p75(NTR) forms disulphide-linked dimers independently of neurotrophin binding through the(More)
The p75 neurotrophin receptor regulates neuronal survival, promoting it in some contexts yet activating apoptosis in others. The mechanism by which the receptor elicits these differential effects is poorly understood. Here, we demonstrate that p75 is cleaved by gamma-secretase in sympathetic neurons, specifically in response to proapoptotic ligands. This(More)
Incidence of Parkinson's disease is lower in women as compared with men. Although neuroprotective effect of estrogen is recognized, the underlying molecular mechanisms are unclear. MPTP (1-methyl-4-phenyl-1, 2, 3, 6, tetrahydro-pyridine), a neurotoxin that causes Parkinson's disease-like symptoms acts through inhibition of mitochondrial complex I.(More)
During the development of the sympathetic nervous system, the p75 neurotrophin receptor (p75NTR) has a dual function: promoting survival together with TrkA in response to NGF, but inducing cell death upon binding pro or mature brain-derived neurotrophic factor (BDNF). Apoptotic signaling through p75NTR requires activation of the stress kinase, JNK. However,(More)
Usage of 'typical' but not 'atypical' antipsychotic drugs is associated with severe side effects involving extrapyramidal tract (EPT). Single dose of haloperidol caused selective inhibition of complex I in frontal cortex, striatum and midbrain (41 and 26%, respectively) which was abolished by pretreatment of mice with thiol antioxidants, alpha-lipoic acid(More)
Oxidative stress, excitotoxicity and mitochondrial dysfunction play synergistic roles in neurodegeneration. Maintenance of thiol homeostasis is important for normal mitochondrial function and dysregulation of protein thiol homeostasis by oxidative stress leads to mitochondrial dysfunction and neurodegeneration. We examined the critical roles played by the(More)
Dimerization is recognized as a crucial step in the activation of many plasma membrane receptors. However, a growing number of receptors pre-exist as dimers in the absence of ligand, indicating that, although necessary, dimerization is not always sufficient for signaling. The p75 neurotrophin receptor (p75(NTR)) forms disulfide-linked dimers at the cell(More)
Mitochondrial dysfunction involving electron transport components is implicated in the pathogenesis of several neurodegenerative disorders and is a critical event in excitotoxicity. Excitatory amino acid L-beta-N-oxalylamino-L-alanine (L-BOAA), causes progressive corticospinal neurodegeneration in humans. In mice, L-BOAA triggers glutathione loss and(More)
Beta-N-Oxalyl amino-L-alanine (L-BOAA), a naturally occurring excitatory amino acid inhibits mitochondrial complex I activity in motor cortex and lumbar spinal cord of mice through oxidation of critical thiol groups. Glutaredoxin, a protein disulfide oxido-reductase mediates recovery of complex I by regenerating protein thiols utilizing reducing equivalents(More)