Rajamani Narayanan

Learn More
Following Symanzik we argue that the Schrödinger functional in lattice gauge theories without matter fields has a well-defined continuum limit. Due to gauge invariance no extra counter terms are required. The Schrödinger functional is, moreover, accessible to numerical simulations. It may hence be used to study the scaling properties of the theory and in(More)
At infinite N, continuum Euclidean SU N gauge theory defined on a symmetrical four torus has a rich phase structure with phases where the finite volume system behaves as if it had infinite extent in some or all of the directions. In addition, fermions are automatically quenched, so planar QCD should be cheaper to solve numerically that full QCD. Large N is(More)
We compute the low lying spectrum of the overlap Dirac operator in the deconfined phase of finite-temperature quenched gauge theory. It suggests the existence of a chiral condensate which we confirm with a direct stochastic estimate. We show that the part of the spectrum responsible for the chiral condensate can be understood as arising from a dilute gas of(More)
The eigenvalue distribution of a Wilson loop operator of fixed shape undergoes a transition under scaling at infinite N . We derive a large N scaling function in a double scaling limit of the average characteristic polynomial associated with the Wilson loop operator in two dimensional QCD. We hypothesize that the transition in three and four dimensional(More)
We define a sparse hermitian lattice Dirac matrix, H, coupling 2n+ 1 Dirac fermions. When 2n fermions are integrated out the induced action for the last fermion is a rational approximation to the hermitian overlap Dirac operator. We provide rigorous bounds on the condition number of H and compare them to bounds for the higher dimensional Dirac operator of(More)