Learn More
The rapid and transient induction of E-selectin gene expression by inflammatory tumor necrosis factor (TNF)-alpha in endothelial cells is mediated by signaling pathways which involve c-Jun N-terminal kinase (JNK) and p38 mitogen-activated protein kinase (MAPK) kinase pathways. To explore this regulation, we first observed that in the continuous presence of(More)
Egr-1 (early-growth response factor-1) is a sequence-specific transcription factor that plays a regulatory role in the expression of many genes important for cell growth, development and the pathogenesis of disease. The transcriptional co-activators CBP (cAMP-response-element-binding-protein-binding protein) and p300 interact with sequence-specific(More)
The macrophage migration inhibitory factor (MIF), a pro-inflammatory cytokine central to the response to endotoxemia, is a putative biomarker in acute lung injury (ALI). To explore MIF as a molecular target and candidate gene in ALI, the MIF gene and protein expression were examined in murine and canine models of ALI (high tidal volume mechanical(More)
The novel alpha(1D) L-type Ca(2+) channel is expressed in supraventricular tissue and has been implicated in the pacemaker activity of the heart and in atrial fibrillation. We recently demonstrated that PKA activation led to increased alpha(1D) Ca(2+) channel activity in tsA201 cells by phosphorylation of the channel protein. Here we sought to identify the(More)
BACKGROUND NFkappaB has long been regarded as a proatherogenic factor, mainly because of its regulation of many of the proinflammatory genes linked to atherosclerosis. Metabolism of sphingomyelin (SM) has been suggested to affect NFkappaB activation, but the mechanism is largely unknown. SMS2 regulates SM levels in cell plasma membrane and lipid rafts and(More)
Sphingomyelin synthase (SMS) catalyzes the synthesis of sphingomyelin (SM) and is required for maintenance of plasma membrane microdomain fluidity. Of the two isoforms of mammalian SMS, SMS1 is mostly present in the trans-Golgi apparatus, whereas SMS2 is predominantly found at the plasma membrane. SMS2 has a role in receptor mediated response to(More)
Two mammalian sphingosine kinase (SphK) isoforms, SphK1 and SphK2, possess identical kinase domains but have distinct kinetic properties and subcellular localizations, suggesting each has one or more specific roles in sphingosine-1-phosphate (S1P) generation. Although both kinases use sphingosine as a substrate to generate S1P, the mechanisms controlling(More)
Sphingosine kinase-1 is known to mediate Mycobacterium smegmatis induced inflammatory responses in macrophages, but its role in controlling infection has not been reported to date. We aimed to unravel the significance of SphK-1 in controlling M. smegmatis infection in RAW 264.7 macrophages. Our results demonstrated for the first time that selective(More)
The pathogenesis of inflammation in the central nervous system (CNS), which contributes to numerous neurodegenerative diseases and results in encephalopathy and neuroinflammation, is poorly understood. Sphingolipid metabolism plays a crucial role in maintaining cellular processes in the CNS, and thus mediates the various pathological consequences of(More)
BACKGROUND It has been proposed that plasma sphingomyelin (SM) plays a very important role in plasma lipoprotein metabolism and atherosclerosis. Sphingomyelin synthase (SMS) is the last enzyme for SM de novo biosynthesis. Two SMS genes, SMS1 and SMS2, have been cloned and characterized. METHODS AND RESULTS To evaluate the in vivo role of SMS2 in SM(More)