Learn More
Stimulation of purinergic receptors inhibits amiloride-sensitive Na+ transport in epithelial tissues by an unknown mechanism. Because previous studies excluded the role of intracellular Ca2+ or protein kinase C, we examined whether purinergic regulation of Na+ absorption occurs via hydrolysis of phospholipid such as phosphatidylinositol-bisphosphates(More)
Previously, the pleiotropic "master kinase" casein kinase 2 (CK2) was shown to interact with CFTR, the protein responsible for cystic fibrosis (CF). Moreover, CK2 inhibition abolished CFTR conductance in cell-attached membrane patches, native epithelial ducts, and Xenopus oocytes. CFTR possesses two CK2 phosphorylation sites (S422 and T1471), with unclear(More)
Cystic fibrosis (CF) airway cells, besides their well-known defect in cAMP-dependent Cl- conductance, are characterized by an enhanced Na+ conductance. In this study we have examined the Na+ conductance in human respiratory tract by measuring transepithelial voltage and resistance (Vte, Rte) and by assessing membrane voltages (Vm) of freshly isolated airway(More)
Rotavirus infection is the most frequent cause for severe diarrhea in infants, killing more than 600,000 every year. The nonstructural protein NSP4 acts as a rotavirus enterotoxin, inducing secretory diarrhea without any structural organ damage. Electrolyte transport was assessed in the colonic epithelium from pups and adult mice using Ussing chamber(More)
The cystic fibrosis transmembrane conductance regulator (CFTR) is a cAMP and protein kinase A (PKA)-regulated Cl(-) channel in the apical membrane of epithelial cells. The metabolically regulated and adenosine monophosphate-stimulated kinase (AMPK) is colocalized with CFTR and attenuates its function. However, the sites for CFTR phosphorylation and the(More)
All vertebrate cells regulate their cell volume by activating chloride channels of unknown molecular identity, thereby activating regulatory volume decrease. We show that the Ca(2+)-activated Cl(-) channel TMEM16A together with other TMEM16 proteins are activated by cell swelling through an autocrine mechanism that involves ATP release and binding to(More)
TMEM16A (anoctamin 1, Ano1), a member of a family of 10 homologous proteins, has been shown to form an essential component of Ca(2+)-activated Cl(-) channels. TMEM16A-null mice exhibit severe defects in epithelial transport along with tracheomalacia and death within 1 mo after birth. Despite its outstanding physiological significance, the mechanisms for(More)
Outwardly rectifying chloride channels (ORCC, ICOR) of intermediate single-channel conductance of around 50 pS, are ubiquitously expressed, but have remained a mystery since their description more than 25 y ago. These channels have been shown to be activated on membrane excision and depolarization of the membrane voltage and by cAMP in the presence of the(More)
Previous in vitro studies suggested that Cl(-) currents produced by the cystic fibrosis transmembrane conductance regulator (CFTR; ABCC7) are inhibited by the alpha1 isoform of the adenosine monophosphate (AMP)-stimulated kinase (AMPK). AMPK is a serine/threonine kinase that is activated during metabolic stress. It has been proposed as a potential mediator(More)
PURPOSE Voltage-gated Kv potassium channels, like ether a go-go (EAG) channels, have been recognized for their oncogenic potential in breast cancer and other malignant tumors. EXPERIMENTAL DESIGN We examined the molecular and functional expression of Kv channels in human colonic cancers and colon of mice treated with the chemical carcinogens(More)