Learn More
Bestrophins form Ca(2+)-activated Cl(-) channels and regulate intracellular Ca(2+) signaling. We demonstrate that bestrophin 1 is localized in the endoplasmic reticulum (ER), where it interacts with stromal interacting molecule 1, the ER-Ca(2+) sensor. Intracellular Ca(2+) transients elicited by stimulation of purinergic P2Y(2) receptors in HEK293 cells(More)
The cystic fibrosis transmembrane conductance regulator (CFTR) is a cAMP and protein kinase A (PKA)-regulated Cl(-) channel in the apical membrane of epithelial cells. The metabolically regulated and adenosine monophosphate-stimulated kinase (AMPK) is colocalized with CFTR and attenuates its function. However, the sites for CFTR phosphorylation and the(More)
Both stimulation of purinergic receptors by ATP and activation of the cystic fibrosis transmembrane conductance regulator (CFTR) inhibit amiloride-sensitive Na+ transport and activate Cl- secretion. These changes in ion transport may well affect cell volume. We therefore examined whether cell shrinkage or cell swelling do affect amiloride-sensitive Na+(More)
Although known for more than 20 years, the molecular identity of epithelial Ca(2+)-activated Cl(-) channels remains obscure. Previous candidate proteins did not hold initial promises, and thus, new hope is put into the recently identified family of bestrophin proteins, as they reflect many of the properties found for native channels. Mutations in the(More)
The cystic-fibrosis transmembrane conductance regulator (CFTR) functions as a cAMP-regulated Cl- channel and as a regulator of other membrane conductances. cAMP-dependent activation of CFTR inhibits epithelial Na+ channels (ENaC). The specificity of interaction between CFTR and ENaC was examined by coexpression of ENaC and ATP-binding cassette (ABC)(More)
Intestinal epithelial electrolyte secretion is activated by increase in intracellular cAMP or Ca2+ and opening of apical Cl− channels. In infants and young animals, but not in adults, Ca2+-activated chloride channels may cause secretory diarrhea during rotavirus infection. While detailed knowledge exists concerning the contribution of cAMP-activated cystic(More)
Regulator of G protein signaling (RGS) proteins function as GTPase-activating proteins (GAPs) that stimulate the inactivation of heterotrimeric G proteins. We have recently shown that RGS proteins may be regulated on a post-translational level (Benzing, T., Brandes, R., Sellin, L., Schermer, B., Lecker, S., Walz, G., and Kim, E. (1999) Nat. Med. 5,(More)
Anoctamin 1 (Ano1; TMEM16A) and anoctamin 2 (Ano2; TMEM16B) are novel Cl(-) channels transiently activated by an increase in intracellular Ca(2+). These channels are essential for epithelial Cl(-) secretion, smooth muscle peristalsis and olfactory signal transduction. They are central to inherited diseases and cancer and can act as heat sensors.(More)
Extracellular nucleotides are important regulators of epithelial ion transport. Here we investigated nucleotide-mediated effects on colonic NaCl secretion and the signal transduction mechanisms involved. Basolateral UDP induced a sustained activation of Cl(-) secretion, which was completely inhibited by 293B, a specific inhibitor of cAMP-stimulated(More)
Activation of the CFTR Cl- channel inhibits epithelial Na+ channels (ENaC), according to studies on epithelial cells and overexpressing recombinant cells. Here we demonstrate that ENaC is inhibited during stimulation of the cystic fibrosis transmembrance conductance regulator (CFTR) in Xenopus oocytes, independent of the experimental set-up and the(More)