Learn More
The iron nitridometalates Li2[(Li(1-x)Fe(I)(x))N] display ferromagnetic ordering and spin freezing. Large magnetic moments up to 5.0mu(B)/Fe are found in the magnetization. In Mössbauer effect studies huge hyperfine magnetic fields up to 696 kOe are observed at specific Fe sites. These extraordinary fields and moments originate in an unusual ligand field(More)
Single crystals of ZnF2(NH3)3 and ZnF2(NH3)2 were obtained under ammonothermal conditions (250 °C, 196 MPa and 500 °C, 136 MPa). Upon thermal decomposition of both ZnF2(NH3)3 and ZnF2(NH3)2, a microcrystalline powder of ZnF2(NH3) was obtained. ZnF2(NH3)3 and ZnF2(NH3)2 represent probable intermediates in a conceivable ammonothermal synthesis of the(More)
The system Li-V-N was studied by means of X-ray and neutron powder diffraction, thermal and chemical analyses, and XAS spectroscopy at the vanadium K-edge. Three polymorphs of Li(7)[VN(4)] have been established from X-ray and neutron powder diffraction (gamma-Li(7)[VN(4)], space group Pfourmacr;3n, No. 218, a = 960.90(4) pm, V = 887.23(6) x 10(6) pm(3), Z =(More)
K2[Mn(NH2)4] and K2[Zn(NH2)4] were successfully synthesized via a mechanochemical method. The mixture of K2[Mn(NH2)4] and LiH showed excellent rehydrogenation properties. In fact, after dehydrogenation K2[Mn(NH2)4]-8LiH fully rehydrogenates within 60 seconds at ca. 230 °C and 5 MPa of H2. This is one of the fastest rehydrogenation rates in amide-hydride(More)
Single crystals of HfAs(1.7)Se(0.2) are grown by chemical transport reaction and their chemical composition characterized in detail by various analytical methods. Chemical analyses and crystal structure investigations by single-crystal X-ray diffraction as well as powder diffraction with synchrotron radiation reveal a tetragonal PbFCl structure type with(More)
The crystal structure of Li7[Mn(V)N4] was re-determined. Isolated tetrahedral [Mn(V)N4](7-) ions are arranged with lithium cations to form a superstructure of the CaF2 anti-type (P4bar3n, No. 218, a = 956.0(1) pm, Z = 8). According to measurements of the magnetic susceptibility, the manganese (tetrahedral coordination) is in a d(2) S = 1 state. Thermal(More)