Rainer Konietschke

Learn More
This paper presents a humanoid two-arm system developed as a research platform for studying dexterous twohanded manipulation. The system is based on the modular DLRLightweight-Robot-III and the DLR-Hand-II. Two arms and hands are combined with a three degrees-of-freedom movable torso and a visual system to form a complete humanoid upper body. In this paper(More)
Research on surgical robotics demands systems for evaluating scientific approaches. Such systems can be divided into dedicated and versatile systems. Dedicated systems are designed for a single surgical task or technique, whereas versatile systems are designed to be expandable and useful in multiple surgical applications. Versatile systems are often based(More)
Research on humanoid robots for use in servicing tasks, e.g. fetching and delivery, attracts steadily more interest. With “Rollin' Justin” a mobile robotic system and research platform is presented that allows sophisticated control algorithms and dexterous manipulation. This video gives an overview of the mobile humanoid robotic system(More)
This paper presents a new method to calculate and display an approximated workspace of a surgical robot in nearly realtime. Displaying this information on a screen in the operation room could support the surgeon during intraoperative trocar placement for teleoperated minimally invasive robotic surgery (MIRS). We give a short overview on existing trocar(More)
The paper presents a new torque-controlled lightweight robot for medical procedures developed at the Institute of Robotics and Mechatronics of the German Aerospace Center. Based on the experiences in lightweight robotics and anthropomorphic robotic hands, a small robot arm with 7 axis and torque-controlled joints tailored to surgical procedures has been(More)
This paper presents a novel system for accurate placement of pedicle screws. The system consists of a new light-weight (<10 kg), kinematically redundant, and fully torque controlled robot. Additionally, the pose of the robot tool-center point is tracked by an optical navigation system, serving as an external reference source. Therefore, it is possible to(More)
This paper introduces the planning and control software of a teleoperation system for research in minimally invasive robotic surgery. It addresses the problem of how to organize a complex system with 41 degrees of freedom as a flexible configurable platform. Robot setup planning, force feedback control and nullspace handling with three robotic arms are(More)
PURPOSE Though already proclaimed about 7 years ago, natural orifice transluminal endoscopic surgery (NOTES) is still in its early stages. A multidisciplinary working team tried to analyze the technical obstacles and identify potential solutions. METHODS After a comprehensive review of the literature, a group of 3 surgeons, 1 gastroenterologist, 10(More)