Learn More
Starch is the major storage carbohydrate in higher plants and of considerable importance for the human diet and for numerous technical applications. In addition, starch can be accumulated transiently in chloroplasts as a temporary deposit of carbohydrates during ongoing photosynthesis. This transitory starch has to be mobilized during the subsequent dark(More)
We have purified a plastidic phosphate transport protein from maize endosperm membranes and cloned and sequenced the corresponding cDNAs from maize endosperm, maize roots, cauliflower buds, tobacco leaves, and Arabidopsis leaves. All of these cDNAs exhibit high homology to each other but only approximately 30% identity to the known chloroplast triose(More)
Phosphoenolpyruvate carboxylase (PEPC) genes from Corynebacterium glutamicum (cppc), Escherichia coli (eppc) or Flaveria trinervia (fppc) were transferred to Solanum tuberosum. Plant regenerants producing foreign PEPC were identified by Western blot analysis. Maximum PEPC activities measured in eppc and fppc plants grown in the greenhouse were doubled(More)
The Arabidopsis thaliana gene At1g74030 codes for a putative plastid phosphoenolpyruvate (PEP) enolase (ENO1). The recombinant ENO1 protein exhibited enolase activity and its kinetic properties were determined. ENO1 is localized to plastids and expressed in most heterotrophic tissues including trichomes and non-root-hair cells, but not in the mesophyll of(More)
The Arabidopsis thaliana tpt-1 mutant which is defective in the chloroplast triose phosphate/phosphate translocator (TPT) was isolated by reverse genetics. It contains a T-DNA insertion 24 bp upstream of the start ATG of the TPT gene. The mutant lacks TPT transcripts and triose phosphate (TP)-specific transport activities are reduced to below 5% of the wild(More)
The Arabidopsis chlorophyll a/b binding protein (CAB) gene underexpressed 1 (cue1) mutant underexpresses light-regulated nuclear genes encoding chloroplast-localized proteins. cue1 also exhibits mesophyll-specific chloroplast and cellular defects, resulting in reticulate leaves. Both the gene underexpression and the leaf cell morphology phenotypes are(More)
The physiological properties of transgenic tobacco plants (Nicotiana tabacum L.) with decreased or increased transport capacities of the chloroplast triose phosphate/phosphate translocator (TPT) were compared in order to investigate the extent to which the TPT controls metabolic fluxes in wild-type tobacco. For this purpose, tobacco lines with an antisense(More)
The vacuole is the most prominent organelle of plant cells. Despite its importance for many physiological and developmental aspects of plant life, little is known about its biogenesis and maintenance. Here we show that Arabidopsis plants expressing a dominant-negative version of the AAA (ATPase associated with various cellular activities) ATPase AtSKD1(More)
The energy status of plant cells strongly depends on the energy metabolism in chloroplasts and mitochondria, which are capable of generating ATP either by photosynthetic or oxidative phosphorylation, respectively. Another energy-rich metabolite inside plastids is the glycolytic intermediate phosphoenolpyruvate (PEP). However, chloroplasts and most non-green(More)
Ammonia assimilation by the plastidic glutamine synthetase/glutamate synthase system requires 2-oxoglutarate (2-OG) as a carbon precursor. Plastids depend on 2-OG import from the cytosol. A plastidic dicarboxylate translocator 1-[2-OG/malate translocator (DiT1)] has been identified and its substrate specificity and kinetic constants have been analyzed in(More)