Learn More
One of the main objectives in the analysis of microarray experiments is the identification of genes that are differentially expressed under two experimental conditions. This task is complicated by the noisiness of the data and the large number of genes that are examined simultaneously. Here, we present a novel technique for identifying differentially(More)
We present a new computational technique (a software implementation, data sets, and supplementary information are available at http://www.enm.bris.ac.uk/lpd/) which enables the probabilistic analysis of cDNA microarray data and we demonstrate its effectiveness in identifying features of biomedical importance. A hierarchical Bayesian model, called Latent(More)
UNLABELLED While meta-analysis provides a powerful tool for analyzing microarray experiments by combining data from multiple studies, it presents unique computational challenges. The Bioconductor package RankProd provides a new and intuitive tool for this purpose in detecting differentially expressed genes under two experimental conditions. The package(More)
Microbial secondary metabolites are a potent source of antibiotics and other pharmaceuticals. Genome mining of their biosynthetic gene clusters has become a key method to accelerate their identification and characterization. In 2011, we developed antiSMASH, a web-based analysis platform that automates this process. Here, we present the highly improved(More)
Recent genetical genomics studies have provided intimate views on gene regulatory networks. Gene expression variations between genetically different individuals have been mapped to the causal regulatory regions, termed expression quantitative trait loci. Whether the environment-induced plastic response of gene expression also shows heritable difference has(More)
Microbial secondary metabolism constitutes a rich source of antibiotics, chemotherapeutics, insecticides and other high-value chemicals. Genome mining of gene clusters that encode the biosynthetic pathways for these metabolites has become a key methodology for novel compound discovery. In 2011, we introduced antiSMASH, a web server and stand-alone tool for(More)
BACKGROUND Interpretation of simple microarray experiments is usually based on the fold-change of gene expression between a reference and a "treated" sample where the treatment can be of many types from drug exposure to genetic variation. Interpretation of the results usually combines lists of differentially expressed genes with previous knowledge about(More)
Full genome microarrays were used to assess transcriptional responses of Arabidopsis seedlings to changing external supply of the essential macronutrient potassium (K(+)). Rank product statistics and iterative group analysis were employed to identify differentially regulated genes and statistically significant coregulated sets of functionally related genes.(More)
Bacterial and fungal secondary metabolism is a rich source of novel bioactive compounds with potential pharmaceutical applications as antibiotics, anti-tumor drugs or cholesterol-lowering drugs. To find new drug candidates, microbiologists are increasingly relying on sequencing genomes of a wide variety of microbes. However, rapidly and reliably pinpointing(More)
We have recently introduced a rank-based test statistic, RankProducts (RP), as a new non-parametric method for detecting differentially expressed genes in microarray experiments. It has been shown to generate surprisingly good results with biological datasets. The basis for this performance and the limits of the method are, however, little understood. Here(More)