Rainer A Ng

Learn More
Duchenne Muscular Dystrophy is a genetic disease caused by the lack of the protein dystrophin. Dystrophic muscles are highly susceptible to contraction-induced injury, and following contractile activity, have disrupted plasma membranes that allow leakage of calcium ions into muscle fibers. Because of the direct relationship between increased intracellular(More)
Skeletal muscle basal lamina is linked to the sarcolemma through transmembrane receptors, including integrins and dystroglycan. The function of dystroglycan relies critically on posttranslational glycosylation, a common target shared by a genetically heterogeneous group of muscular dystrophies characterized by alpha-dystroglycan hypoglycosylation. Here we(More)
Mitochondrial function, hydrogen peroxide generation and oxidative damage were measured in hind-limb skeletal muscle from young (6-8 month) and old (27-29 month) wildtype and heterozygous Mn-superoxide dismutase (MnSOD) knockout mice (Sod2(+/-)). The reduction in MnSOD activity in the Sod2(+/-) mice makes these mice a good model to examine the implications(More)
A progressive loss of skeletal muscle mass and force generating capacity occurs with aging. Mice are commonly used in the study of aging-associated changes in muscle size and strength, with most models of aging demonstrating 15-35% reductions in muscle mass, cross-sectional area (CSA), maximum isometric force production (Po) and specific force (sPo), which(More)
Skeletal muscle generation of reactive oxygen species (ROS) is increased following contractile activity and these species interact with multiple signaling pathways to mediate adaptations to contractions. The sources and time course of the increase in ROS during contractions remain undefined. Confocal microscopy with specific fluorescent probes was used to(More)
The muscular dystrophies (MDs) represent a diverse collection of inherited human disorders, which affect to varying degrees skeletal, cardiac, and sometimes smooth muscle (Emery, 2002). To date, more than 50 different genes have been implicated as causing one or more types of MD (Bansal et al., 2003). In many cases, invaluable insights into disease(More)
1. Duchenne muscular dystrophy (DMD), a severe muscle wasting disease of young boys with an incidence of one in every 3000, results from a mutation in the gene that encodes dystrophin. The absence of dystrophin expression in skeletal muscles and heart results in the degeneration of muscle fibres and, consequently, severe muscle weakness and wasting. The mdx(More)
Eighteen patients who presented with severe aortic regurgitation and dilatation of the ascending aorta were found to be formes frustes of Marfan's syndrome and formed the basis for this clinicogenetic study. All had aortic valve replacement and reconstruction of part of the ascending aorta. The diagnosis was confirmed by histological examination of the(More)
  • 1