Rahmat Naddafi

Learn More
BACKGROUND Elemental imbalances of carbon (C): nitrogen (N): phosphorus (P) ratios in food resources can constrain the growth of grazers owning to tight coupling between growth rate, RNA allocation and biomass P content in animals. Testing for stoichiometric constraints among invasive species is a novel challenge in invasion ecology to unravel how a(More)
We quantified cover, population densities, size distribution and biomass of zebra mussels along 7 transects in eutrophic Lake Ekoln (Sweden). We also analyzed the elemental (C, N, P) composition of zebra mussel soft tissue and computed their retention rates of N and P their quantitative role in the lake’s nutrient budget. We hypothesized that zebra mussels(More)
To address the question whether the abundance of an invasive species can be explained by physical and chemical properties of the invaded ecosystems, we gathered density data of invasive zebra mussels and the physical and chemical data of ecosystems they invaded. We assembled published data from 55 European and 13 North American lakes and developed a model(More)
We examined the effect of the zebra mussel, Dreissena polymorpha, an exotic species, on seston stoichiometry by conducting laboratory experiments in which we varied nutrient composition of seston and mussels over time. Zebra mussels altered the stoichiometry of seston through removal of particulate organic nutrients and changed the stoichiometry of the(More)
We examined the spatial variation in carbon:nitrogen:phosphorus (C:N:P) stoichiometry and condition index of the zebra mussel (Dreissena polymorpha), non-indigenous species, in four Swedish lakes with different productivity. Within-lake variability was observed in tissue C:N molar ratios of Dreissena in all lakes and in tissue C:P ratio only in three lakes.(More)
The enemy release hypothesis states that invasive species are successful in their new environment because native species are not adapted to utilize the invasive. If true for predators, native predators should have lower feeding rates on the invasive species than a predator from the native range of the invasive species. We tested this hypothesis for zebra(More)
Animals can be important in modulating ecosystem-level nutrient cycling, although their importance varies greatly among species and ecosystems. Nutrient cycling rates of individual animals represent valuable data for testing the predictions of important frameworks such as the Metabolic Theory of Ecology (MTE) and ecological stoichiometry (ES). They also(More)
  • 1