Raghu Kalluri

Learn More
The origins of the mesenchymal cells participating in tissue repair and pathological processes, notably tissue fibrosis, tumor invasiveness, and metastasis, are poorly understood. However, emerging evidence suggests that epithelial-mesenchymal transitions (EMTs) represent one important source of these cells. As we discuss here, processes similar to the EMTs(More)
Tumours are known as wounds that do not heal - this implies that cells that are involved in angiogenesis and the response to injury, such as endothelial cells and fibroblasts, have a prominent role in the progression, growth and spread of cancers. Fibroblasts are associated with cancer cells at all stages of cancer progression, and their structural and(More)
The conversion of an epithelial cell to a mesenchymal cell is critical to metazoan embryogenesis and a defining structural feature of organ development. Current interest in this process, which is described as an epithelial-mesenchymal transition (EMT), stems from its developmental importance and its involvement in several adult pathologies. Interest and(More)
Epithelial to mesenchymal transition (EMT) is a central mechanism for diversifying the cells found in complex tissues. This dynamic process helps organize the formation of the body plan, and while EMT is well studied in the context of embryonic development, it also plays a role in the genesis of fibroblasts during organ fibrosis in adult tissues. Emerging(More)
Cardiac fibrosis, associated with a decreased extent of microvasculature and with disruption of normal myocardial structures, results from excessive deposition of extracellular matrix, which is mediated by the recruitment of fibroblasts. The source of these fibroblasts is unclear and specific anti-fibrotic therapies are not currently available. Here we show(More)
Bone morphogenic protein (BMP)-7 is a 35-kDa homodimeric protein and a member of the transforming growth factor (TGF)-beta superfamily. BMP-7 expression is highest in the kidney, and its genetic deletion in mice leads to severe impairment of eye, skeletal and kidney development. Here we report that BMP-7 reverses TGF-beta1-induced epithelial-to-mesenchymal(More)
In recent years, the basement membrane (BM)--a specialized form of extracellular matrix (ECM)--has been recognized as an important regulator of cell behaviour, rather than just a structural feature of tissues. The BM mediates tissue compartmentalization and sends signals to epithelial cells about the external microenvironment. The BM is also an important(More)
Progressive kidney failure is a genetically and clinically heterogeneous group of disorders. Podocyte foot processes and the interposed glomerular slit diaphragm are essential components of the permeability barrier in the kidney. Mutations in genes encoding structural proteins of the podocyte lead to the development of proteinuria, resulting in progressive(More)
Tumors are unorganized organs that contain many different cell types. In the recent years, many studies have reported that primary tumors contain fibroblasts/myofibroblasts (carcinoma-associated fibroblasts), mesenchymal cells such as pericytes/mural cells and other vascular smooth muscle cells. Several different markers are used routinely to identify(More)
Pancreatic ductal adenocarcinoma (PDAC) is associated with marked fibrosis and stromal myofibroblasts, but their functional contribution remains unknown. Transgenic mice with the ability to delete αSMA(+) myofibroblasts in pancreatic cancer were generated. Depletion starting at either noninvasive precursor (pancreatic intraepithelial neoplasia) or the PDAC(More)