Learn More
We describe a hierarchy of models for legged locomotion, emphasizing relationships among feedforward (preflexive) stability, maneuverability, and reflexive feedback. We focus on a hexapedal geometry representative of insect locomotion in the ground plane that includes a neural central pattern generator circuit, nonlinear muscles, and a representative(More)
We develop a neuromechanical model for running insects that includes a simplified hexapedal leg geometry with agonist-antagonist muscle pairs actuating each leg joint. Restricting to dynamics in the horizontal plane and neglecting leg masses, we reduce the model to three degrees of freedom describing translational and yawing motions of the body. Muscles are(More)
We develop a simple model for insect locomotion in the horizontal (ground) plane. As in earlier work by Seipel et al. (Biol Cybern 91(0):76–90, 2004) we employ six actuated legs that also contain passive springs, but the legs, with “hip” and ‘knee’ joints, better represent insect morphology. Actuation is provided via preferred angle inputs at each joint,(More)
In earlier work, we have developed an integrated model for insect locomotion that includes a central pattern generator (CPG), nonlinear muscles, hexapedal geometry and a representative proprioceptive sensory pathway. Here, we employ phase reduction and averaging theory to replace 264 ordinary differential equations (ODEs), describing bursting neurons in the(More)
(247 articles) applied mathematics (70 articles) differential equations (166 articles) biomathematics collections Articles on similar topics can be found in the following Email alerting service here in the box at the top right-hand corner of the article or click Receive free email alerts when new articles cite this article-sign up In earlier work, we have(More)
  • 1