Learn More
Prediction of transcription factor binding sites is an important challenge in genome analysis. The advent of next generation genome sequencing technologies makes the development of effective computational approaches particularly imperative. We have developed a novel training-based methodology intended for prokaryotic transcription factor binding site(More)
Permission to make digital or hard copies of portions of this work for personal or classroom use is granted provided that the copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. To copy otherwise requires prior specific permission by the publisher mentioned above.(More)
NKG2D (KLRK1) is an activating receptor on natural killer (NK) and T-cells and binds a diverse panel of polymorphic ligands encoded by the MIC and RAET1 gene families. We studied the clinical importance of retinoic acid early transcript-1 (RAET1) polymorphism in allogeneic stem cell transplantation (SCT) by determining the frequency of 18 single nucleotide(More)
MOTIVATION Multiple sequence alignments (MSAs) are usually scored under the assumption that the sequences being aligned have evolved by common descent. Consequently, the differences between sequences reflect the impact of insertions, deletions and mutations. However, non-coding DNA binding sequences, such as transcription factor binding sites (TFBSs), are(More)
Motivation: Multiple Sequence Alignments (MSAs) are usually scored under the assumption that the sequences being aligned have evolved by common descent. Consequently, the differences between sequences reflect the impact of insertions, deletions and mutations. However, non-coding DNA binding sequences, such as transcription factor binding sites (TFBS), are(More)
  • 1