Learn More
BACKGROUND Currently available methods to predict splice sites are mainly based on the independent and progressive alignment of transcript data (mostly ESTs) to the genomic sequence. Apart from often being computationally expensive, this approach is vulnerable to several problems--hence the need to develop novel strategies. RESULTS We propose a method,(More)
MOTIVATION Alternative splicing has recently emerged as a key mechanism responsible for the expansion of transcriptome and proteome complexity in human and other organisms. Although several online resources devoted to alternative splicing analysis are available they may suffer from limitations related both to the computational methodologies adopted and to(More)
In this paper, we investigate the computational and approximation complexity of the Exemplar Longest Common Subsequence of a set of sequences (ELCS problem), a generalization of the Longest Common Subsequence problem, where the input sequences are over the union of two disjoint sets of symbols, a set of mandatory symbols and a set of optional symbols. We(More)
Alternative splicing (AS) is now emerging as a major mechanism contributing to the expansion of the transcriptome and proteome complexity of multicellular organisms. The fact that a single gene locus may give rise to multiple mRNAs and protein isoforms, showing both major and subtle structural variations, is an exceptionally versatile tool in the(More)
Alternative splicing (AS) is currently considered as one of the main mechanisms able to explain the huge gap between the number of predicted genes and the high complexity of the proteome in humans. The rapid growth of Expressed Sequence Tag (EST) data has encouraged the development of computational methods to predict alternative splicing from the analysis(More)
Alternative splicing is emerging as a major mechanism for the expansion of the transcriptome and proteome diversity, particularly in human and other vertebrates. However, the proportion of alternative transcripts and proteins actually endowed with functional activity is currently highly debated. We present here a new release of ASPicDB which now provides a(More)
The fact that a large majority of mammalian genes are subject to alternative splicing indicates that this phenomenon represents a major mechanism for increasing proteome complexity. Here, we provide an overview of current methods for the computational prediction of alternative splicing based on the alignment of genome and transcript sequences. Specific(More)
Next-generation sequencing (NGS) technologies need new methodologies for alternative splicing (AS) analysis. Current computational methods for AS analysis from NGS data are mainly based on aligning short reads against a reference genome, while methods that do not need a reference genome are mostly underdeveloped. In this context, the main developed tools(More)
The large amount of short read data that has to be assembled in future applications, such as in metagenomics or cancer genomics, strongly motivates the investigation of disk-based approaches to index next-generation sequencing (NGS) data. Positive results in this direction stimulate the investigation of efficient external memory algorithms for de novo(More)
In this paper we present an efficient external memory algorithm to compute the string graph from a collection of reads, which is a fundamental data representation used for sequence assembly. Our algorithm builds upon some recent results on lightweight Burrows-Wheeler Transform (BWT) and Longest Common Prefix (LCP) construction providing, as a by-product, an(More)