Learn More
We have demonstrated that a metal-dielectric-metal microcavity combined with quantum well intersubband transitions is an ideal system for the generation of cavity polariton states in the terahertz region. The metallic cavity has highly confined radiation modes that can be tuned in resonance with the intersubband transition. In this system we were able to(More)
We exploit the modal confinement properties of metal-metal ridge waveguides to reduce the thickness of the active laser cores in both terahertz and mid-infrared quantum cascade lasers. Devices with active regions over 60 times thinner than the free-space emission wavelength are demonstrated. The devices surprisingly show only a modest increase in threshold(More)
Semiconductor lasers based on two-dimensional photonic crystals generally rely on an optically pumped central area, surrounded by un-pumped, and therefore absorbing, regions. This ideal configuration is lost when photonic-crystal lasers are electrically pumped, which is practically more attractive as an external laser source is not required. In this case,(More)
We combine photonic and electronic band structure engineering to create a surface-emitting quantum cascade microcavity laser. A high-index contrast two-dimensional photonic crystal is used to form a micro-resonator that simultaneously provides feedback for laser action and diffracts light vertically from the surface of the semiconductor surface. A top(More)
The fundamental mechanism behind laser action leads in general only to narrowband, single-wavelength emission. Several approaches for achieving spectrally broadband laser action have been put forward, such as enhancing the optical feedback in the wings of the gain spectrum, multi-peaked gain spectra, and the most favoured technique at present, ultrashort(More)
We demonstrate an efficient intracavity nonlinear interaction of laser modes in a specially adapted quantum cascade laser. A two-wavelength quantum cascade laser structure emitting at wavelengths of 7.1 and 9.5 micrometer included cascaded resonant optical intersubband transitions in an intracavity configuration leading to resonantly enhanced sum-frequency(More)
Symmetric and antisymmetric band-edge modes exist in distributed feedback surface-emitting semiconductor lasers, with the dominant difference being the radiation loss. Devices generally operate on the low-loss antisymmetric modes, although the power extraction efficiency is low. Here we develop graded photonic heterostructures, which localize the symmetric(More)
The regime of ultrastrong light-matter interaction has been investigated theoretically and experimentally, using zero-dimensional electromagnetic resonators coupled with an electronic transition between two confined states of a semiconductor quantum well. We have measured a splitting between the coupled modes that amounts to 48% of the energy transition,(More)
We present the design of mid-infrared and THz quantum cascade laser cavities formed from planar photonic crystals with a complete in-plane photonic bandgap. The design is based on a honeycomb lattice, and achieves a full in-plane photonic gap for transverse-magnetic polarized light while preserving a connected pattern for efficient electrical injection.(More)
The identification of the lasing mode within a quantum cascade photonic crystal microcavity laser emitting at ␭ϳ8 ␮m is presented. The symmetry of the lasing mode is determined by the position of nodal lines within micro-bolometer camera measurements of its polarized spatial distribution. Full three-dimensional finite-difference time-domain simulations are(More)