Learn More
A subset of follicular thyroid carcinomas contains a balanced translocation, t(2;3)(q13;p25), that results in fusion of the paired box gene 8 (PAX8) and peroxisome proliferator-activated receptor gamma (PPARG) genes with concomitant expression of a PAX8-PPARgamma fusion protein, PPFP. PPFP is thought to contribute to neoplasia through a mechanism in which(More)
Thyroid cancer poses a significant clinical challenge, and our understanding of its pathogenesis is incomplete. To gain insight into the pathogenesis of papillary thyroid carcinoma, transcriptional profiles of four normal thyroids and 51 papillary carcinomas (PCs) were generated using DNA microarrays. The tumors were genotyped for their common activating(More)
The rearranged during transfection (RET) proto-oncogene was identified in 1985 and, very soon thereafter, a rearrangement named RET/PTC was discovered in papillary thyroid carcinoma (PTC). After this discovery, other RET rearrangements were found in PTCs, particularly in those induced by radiation. For many years, it was thought that these genetic(More)
Genes crucial for cancer development can be mutated via various mechanisms, which may reflect the nature of the mutagen. In thyroid papillary carcinomas, mutations of genes coding for effectors along the MAPK pathway are central for transformation. BRAF point mutation is most common in sporadic tumors. By contrast, radiation-induced tumors are associated(More)
Thyroid papillary carcinoma is the most common type of endocrine cancer. It is frequently associated with genetic alterations leading to activation of the MAPK signaling pathway. The two most frequently affected genes, BRAF and RET, are activated by either point mutation or as a result of chromosomal rearrangement. These mutations are tumorigenic in thyroid(More)
CONTEXT RET/PTC rearrangements have been reported in papillary thyroid carcinomas with variable frequency in studies that used different detection methods. OBJECTIVE Our objective was to determine the role of different detection methods and tumor genetic heterogeneity on RET/PTC detection. DESIGN Sixty-five papillary carcinomas were analyzed for(More)
BACKGROUND Medullary thyroid cancer (MTC) is capable of secreting several proteins, such as calcitonin (Ct), carcinoembryonic antigen (CEA), chromogranin and others. Recently, we observed an aggressive MTC with high levels of serum carbohydrate antigen 19.9 (Ca 19.9) and a rapid evolution to death. OBJECTIVE The aim of this study was to evaluate whether(More)
We studied cell growth rate, mechanisms of growth inhibition, phenotype re-differentiation, expression of RARalpha, beta, gamma and differentiation thyroid genes before and after combined treatment with 5-Aza-CdR and RA (5-Aza/RA) of human thyroid carcinoma cell lines (FRO, WRO, TT). Furthermore, the activity and localization of the re-expressed(More)
BACKGROUND Approximately 60% of sporadic medullary thyroid carcinomas (sMTC) remain orphan of a recognized genetic cause. Recently, a high percentage of RAS point mutations have been described in RET-negative sMTC. The aim of this study was to assess the prevalence of RAS point mutations in a large series of MTC collected in four Italian centers. METHODS(More)
BRAF belongs to the RAF family of protein kinases that are important components of the MAPK signaling pathway mediating cell growth, differentiation and survival. Activating point mutation of the BRAF gene resulting in V600E (previously designated as V599E) is a common event in thyroid papillary carcinoma, being found in approx 40% of this tumor. It has(More)