Learn More
Analyzing telemetry data of player behavior in computer games is a topic of increasing interest for industry and research, alike. When applied to game telemetry data, pattern recognition and statistical analysis provide valuable business intelligence tools for game development. An important problem in this area is to characterize how player engagement in a(More)
Evaluating the spatial behavior of players allows for comparing design intent with emergent behavior. However, spatial analytics for game development is still in its infancy and current analysis mostly relies on aggregate visualizations such as heatmaps. In this paper, we propose the use of advanced spatial clustering techniques to evaluate player behavior.(More)
Behavioral data from computer games can be exceptionally high-dimensional, of massive scale and cover a temporal segment reaching years of real-time and a varying population of users. Clustering of user behavior provides a way to discover behavioral patterns that are actionable for game developers. Interpretability and reliability of clustering results is(More)
Free-to-Play or “freemium” games represent a fundamental shift in the business models of the game industry, facilitated by the increasing use of online distribution platforms and the introduction of increasingly powerful mobile platforms. The ability of a game development company to analyze and derive insights from behavioral telemetry is(More)
The collection and analysis of behavioral telemetry in digital games has in the past five years become an integral part of game development. One of the key challenges in game analytics is the development of methods for characterizing and predicting player behavior as it evolves over time. Characterizing behavior is necessary for monitoring player(More)
The analysis of user behavior in digital games has been aided by the introduction of user telemetry in game development, which provides unprecedented access to quantitative data on user behavior from the installed game clients of the entire population of players. Player behavior telemetry datasets can be exceptionally complex, with features recorded for a(More)
Recent years have seen a deluge of behavioral data from players hitting the game industry. Reasons for this data surge are many and include the introduction of new business models, technical innovations, the popularity of online games, and the increasing persistence of games. Irrespective of the causes, the proliferation of behavioral data poses the problem(More)
Behavioral datasets from major commercial game titles of the “AAA” grade generally feature high dimensionality and large sample sizes, from tens of thousands to millions, covering time scales stretching into several years of real-time, and evolving user populations. This makes dimensionality-reduction methods such as clustering and(More)
Mobile digital games are dominantly released under the freemium business model, but only a small fraction of the players makes any purchases. The ability to predict who will make a purchase enables optimization of marketing efforts, and tailoring customer relationship management to the specific user’s profile. Here this challenge is addressed via two models(More)