Rafal Al-Saigh

  • Citations Per Year
Learn More
The pharmacodynamics (PD) of voriconazole activity against Aspergillus spp. were studied using a new in vitro dynamic model simulating voriconazole human pharmacokinetics (PK), and the PK-PD data were bridged with human drug exposure to assess the percent target (near-maximum activity) attainment of different voriconazole dosages. Three Aspergillus clinical(More)
In conventional ΜΙC tests, fungi are exposed to constant drug concentrations, whereas in vivo, fungi are exposed to changing drug concentrations. Therefore, we developed a new in vitro pharmacokinetic/pharmacodynamic model where human plasma pharmacokinetics of standard doses of 1 mg/kg amphotericin B, 4 mg/kg voriconazole, and 1 mg/kg caspofungin were(More)
Given the high protein binding rates of antifungal drugs and the effect of serum proteins on Aspergillus growth, we investigated the in vitro pharmacodynamics of amphotericin B, voriconazole, and three echinocandins in the presence of human serum, assessing both inhibitory and fungicidal effects. In vitro inhibitory (IC) and fungicidal (FC) concentrations(More)
Conventional MIC testing of amphotericin B results in narrow MIC ranges challenging the detection of resistant strains. In order to discern amphotericin B pharmacodynamics, the in vitro activity of amphotericin B was studied against Aspergillus isolates with the same MICs by using a new in vitro pharmacokinetic/pharmacodynamic (PK/PD) model that simulates(More)
  • 1