Learn More
The aim of the present study was to investigate the effects of NMDA receptor blockade on formation of object recognition memory. In the first experiment, adult Wistar rats were given an intraperitoneal injection of saline or the NMDA receptor antagonist [(+)-5-methyl-10,11-dihydro-5H-dibenzo-[a,d]cyclo-hepten-5,10-imine-maleate] (MK-801) (0.001, 0.01, or(More)
Although the gastrin-releasing peptide-preferring bombesin receptor (GRPR) has been implicated in memory formation, the underlying molecular events are poorly understood. In the present study, we examined interactions between the GRPR and cellular signaling pathways in influencing memory consolidation in the hippocampus. Male Wistar rats received bilateral(More)
Laminin (LN) plays a major role in neuronal differentiation, migration and survival. Here, we show that the cellular prion protein (PrPc) is a saturable, specific, high-affinity receptor for LN. The PrPc-LN interaction is involved in the neuritogenesis induced by NGF plus LN in the PC-12 cell line and the binding site resides in a carboxy-terminal(More)
We have studied the effect of training conditions on hippocampal protein synthesis-dependent processes in consolidation of the inhibitory avoidance task. Adult male Wistar rats were trained and tested in a step-down inhibitory avoidance task (0.4 mA foot shock, 24 hr training-test interval). Fifteen minutes before or 0, 3, or 6 hr after training, animals(More)
Mammalian target of rapamycin (mTOR), a central regulator of protein synthesis in neurons, has been implicated in synaptic plasticity and memory. Here we show that mTOR inhibition by rapamycin in the basolateral amygdala (BLA) or dorsal hippocampus (DH) impairs both formation and reconsolidation of memory for inhibitory avoidance (IA) in rats. Male Wistar(More)
Mitogen-activated protein kinase (MAPK) is abundantly expressed in postmitotic neurons of the developed nervous system. MAPK is activated and required for induction of long-term potentiation (LTP) in the CA1 area of the hippocampus, which is blocked by the specific inhibitor of the MAPK kinase, PD 098059. Recently it was demonstrated that MAPK is activated(More)
Iron accumulation in the brain has been associated to the pathogenesis of neurodegenerative disorders. We have previously demonstrated that iron overload in the neonatal period results in severe and persistent memory deficits in adult rats. Alterations in histone acetylation have been associated with memory deficits in models of neurological disorders. Here(More)
Mangiferin (2-beta-D-glucopyranosyl-1,3,6,7-tetrahydroxyxanthone) is a xanthone widely distributed in higher plants showing antioxidative, antiviral, anticancer, antidiabetic, immunomodulatory, hepatoprotective, and analgesic effects. In the present study, we have investigated the effects of systemic administration of mangiferin on behavioral outcomes of(More)
The non-competitive N-methyl-d-aspartate (NMDA) glutamate receptor antagonist ketamine has been shown to produce cognitive deficits. However, the effects of ketamine on the consolidation phase of memory remain poorly characterized. Here we show that systemic administration of ketamine immediately after training dose-dependently impairs long-term retention(More)
Haloperidol (HAL) is a typical neuroleptic that acts primarily as a D2 dopamine receptor antagonist. It has been proposed that reactive oxygen species play a causative role in neurotoxic effects induced by HAL. Adult male Wistar rats received daily injections of HAL (1.5 mg/kg) or clozapine (CLO, 25 mg/kg), an atypical neuroleptic, for 28 days. Control(More)