Learn More
Competitive autonomous systems in R 3 have the remarkable property of verifying an analogue of the Poincaré-Bendixon theorem for planar equations. This fact allows us to prove the existence of orbitally stable closed orbits for those systems under easily checkable hypothesis. Our aim is to introduce , by changing the ordering in R 3 , a new class of(More)
The method of upper and lower solutions is a classical tool in the theory of periodic differential equations of the second order. We show that this method does not have a direct extension to almost periodic equations. To do this we construct equations of this type without almost periodic solutions but having two constants as ordered upper and lower(More)
Results of the Landesman–Lazer type provide necessary and sufficient conditions for the existence of periodic solutions of certain nonlinear differential equations with forcing. Typically, they deal with scalar problems. This paper presents a discussion of possible extensions to systems. The emphasis is placed on the new phenomena produced by the increase(More)
Motivated by the problem of the existence of a solution of the nonlinear telegraph equation wt + clll-u,, + h(t. c, u) = 0, such that u(t, ,) satisfies suitable boundary conditions over (0,~) ar;d Ilu(t,.)II is bounded over W for some function space norm 11 11: we prove the existence of bounded solutions over R of semilinear evolution equations in a Hilbert(More)