Rafael Mosberger

Learn More
We report on a novel vision-based method for reliable human detection from vehicles operating in industrial environments in the vicinity of workers. By exploiting the fact that reflective vests represent a standard safety equipment on most industrial worksites, we use a single camera system and active IR illumination to detect humans by identifying the(More)
We propose and evaluate a system for detecting and tracking multiple humans wearing high-visibility clothing from vehicles operating in industrial work environments. We use a customized stereo camera setup equipped with IR flash and IR filter to detect the reflective material on the worker's garments and estimate their trajectories in 3D space. An(More)
This article presents a novel approach for vision-based detection and tracking of humans wearing high-visibility clothing with retro-reflective markers. Addressing industrial applications where heavy vehicles operate in the vicinity of humans, we deploy a customized stereo camera setup with active illumination that allows for efficient detection of the(More)
So far, autonomous order picking (commissioning) systems have not been able to meet the stringent demands regarding speed, safety, and accuracy of real-world warehouse automation, resulting in reliance on human workers. In this letter, we target the next step in autonomous robot commissioning: automatizing the currently manual order picking procedure. To(More)
This paper presents a novel possible solution for people detection and estimation of their 3D position in challenging shared environments. Addressing safety critical applications in industrial environments, we make the basic assumption that people wear reflective vests. In order to detect these vests and to discriminate them from other reflective material,(More)
We address the problem of human detection from heavy mobile machinery and robotic equipment operating at industrial working sites. Exploiting the fact that workers are typically obliged to wear high-visibility clothing with reflective markers, we propose a new recognition algorithm that specifically incorporates the highly discriminative features of the(More)
We address the problem of extracting human body posture labels, upper body orientation and the spatial location of individual body parts from near-infrared (NIR) images depicting patterns of retro-reflective markers. The analyzed patterns originate from the observation of humans equipped with protective high-visibility garments that represent common safety(More)
  • 1