Rafael Grande-Aztatzi

Learn More
The prion protein (PrP(C)) is implicated in the spongiform encephalopathies in mammals, and it is known to bind Cu(II) at the N-terminal region. The region around His111 has been proposed to be key for the conversion of normal PrP(C) to its infectious isoform PrP(Sc). The principal aim of this study is to understand the role of protons and methionine(More)
An extensive theoretical investigation of the electronic structure of a tested fair model dicupra[10]annulene compound, based on the analysis of atom-pair delocalization indices, Bader's molecular graph, the inspection of the canonical molecular orbitals, the z components of their Nuclear Independent Chemical Shifts, NICS(0)zz, and the normalized Giambiagi(More)
In spite of significant experimental effort dedicated to the study of Cu(2+) binding to the amyloid beta (Aβ) peptide, involved in Alzheimer's disease, the nature of the oxygen-based ligand in the low pH component of the Cu(2+)-Aβ(1-16) complex is still under debate. This study reports density-functional-theory-based calculations that explore the potential(More)
The prion protein (PrP(C)) binds Cu(II) in its N-terminal region, and it is associated to a group of neurodegenerative diseases termed transmissible spongiform encephalopaties (TSEs). The isoform PrP(Sc), derived from the normal PrP(C), is the pathogenic agent of TSEs. Using spectroscopic techniques (UV-vis absorption, circular dichroism, and electron(More)
The ability of the cellular prion protein (PrP(C)) to bind copper in vivo points to a physiological role for PrP(C) in copper transport. Six copper binding sites have been identified in the nonstructured N-terminal region of human PrP(C). Among these sites, the His111 site is unique in that it contains a MKHM motif that would confer interesting Cu(I) and(More)
The structural and optical properties of both the naked and passivated bimetallic Al5Au5 nanoclusters have been analyzed based on data obtained from ab initio density functional theory and quantum molecular dynamics simulations. It has been found that the Al5Au5 nanocluster possesses a hollow shaped minimum energy structure with segregated Al and Au layered(More)
The synthesis, structural, electronic and magnetic characterization of five dinuclear Co(II) azacryptand compounds (1-5) bridged through different ions are reported. The magnetic exchange interactions, 2J values, obtained from theoretical computations show that the variation of the intermetallic angles and distances lead to antiferromagnetic behaviours.(More)
High-level multiconfigurational self-consistent field calculations, supplemented with multiconfigurational quasi-degenerate perturbation theory ab initio calculations with the aug-cc-pVTZ basis set, demonstrate that the [E(μ-XH)]2 (E = P, As; X = N, P, As) compounds possess one planar and one butterfly-like isomer. The calculations predict that for X = N,(More)
Aluminum, the third most abundant element in the Earth's crust and one of the key industrial components of our everyday life, has been associated with several neurodegenerative diseases due to its ability to promote neurofilament tangles and β-amyloid peptide aggregation. However, the experimental characterization of aluminum speciation in vivo is a(More)