Raeyoung Kim

  • Citations Per Year
Learn More
Neuroelectronic interfaces are imperative in investigating neural tissues as electrical signals are the main information carriers in the nervous system and metal microelectrodes have been widely used for recording and stimulation of nerve cells. For high performance microelectrodes, low tissue-electrode interfacial impedance and high charge injection limits(More)
OBJECTIVE Platinum black (PtBK) has long been used for microelectrode fabrication owing to its high recording performance of neural signals. The porous structure of PtBK enlarges the surface area and lowers the impedance, which results in background noise reduction. However, the brittleness of PtBK has been a problem in practice. In this work, we report(More)
Engineering of neural interfaces with nanomaterials for remote manipulation facilitates the development of platforms for the study and treatment of brain disorders, yet extending their capability to inhibiting the electrical activities of unmodified neurons has been difficult. Here we report the development of an electro-optical neural platform integrated(More)
The electrode-specific formation of polydopamine films is achieved by applying positive voltage to the target electrodes at pH 6.0. The functionalization of the films is simultaneously carried out by co-depositing dopamine with molecules of interest onto the electrode.
Platinum black microelectrodes are widely used as an effective neural signal recording sensor. The simple fabrication process, high quality signal recording and proper biocompatibility are the main advantages of platinum black microelectrodes. When microelectrodes are exposed to actual biological system, various physical stimuli are applied. However, the(More)
  • 1