Learn More
The mammalian circadian clock lying in the suprachiasmatic nucleus (SCN) controls daily rhythms and synchronizes the organism to its environment. In all organisms studied, circadian timekeeping is cell-autonomous, and rhythmicity is thought to be generated by a feedback loop involving clock proteins that inhibit transcription of their own genes. In the(More)
Daily oscillations in physiology and behavior are regulated by a brain clock located in the suprachiasmatic nucleus (SCN). Individual cells within this nucleus contain an autonomous molecular clock. Recent discoveries that make use of new molecular and genetic data and tools highlight the conclusion that the SCN is a heterogeneous network of functionally(More)
Successful reproduction requires maintenance of the reproductive axis within fine operating limits through negative feedback actions of sex steroids. Despite the importance of this homeostatic process, our understanding of the neural loci, pathways, and neurochemicals responsible remain incomplete. Here, we reveal a neuropeptidergic pathway that directly(More)
For the past two decades the brain has been considered to be an immune-privileged site that excludes circulating cells from the parenchyma. New evidence indicates that some hematocytes reside in the brain, while others traffic through it. Mast cells belong to both of these functional types. Moreover, the appearance of mast cells in the CNS can be triggered(More)
It is well established that mast cells (MCs) occur within the CNS of many species. Furthermore, their numbers can increase rapidly in adults in response to altered physiological conditions. In this study we found that early postpartum rats had significantly more mast cells in the thalamus than virgin controls. Evidence from semithin sections from these(More)
Increases in arousal and activity in anticipation of a meal, termed "food anticipatory activity" (FAA), depend on circadian food-entrainable oscillators (FEOs), whose locations and output signals have long been sought. It is known that ghrelin is secreted in anticipation of a regularly scheduled mealtime. We show here that ghrelin administration increases(More)
The suprachiasmatic nucleus (SCN) of the hypothalamus is the neural locus of the circadian clock. To explore the organization of the SCN, two strains of transgenic mice, each bearing a jellyfish green fluorescent protein (GFP) reporter, were used. In one, GFP was driven by the promoter region of the mouse Period1 gene (mPer1) (Per1::GFP mouse), whereas in(More)
The mechanism whereby brief light exposure resets the mammalian circadian clock in a phase dependent manner is not known, but is thought to involve Per gene expression. At the behavioural level, a light pulse produces phase delays in early subjective night, phase advances in late subjective night, and no phase shifts in mid-subjective night or subjective(More)
The endogenous circadian clock of the mammalian suprachiasmatic nucleus (SCN) can be reset by light to synchronize the biological clock of the brain with the external environment. This process involves induction of immediate-early genes such as the circadian clock gene Period1 (Per1) and results in a stable shift in the timing of behavioral and(More)
The mammalian suprachiasmatic nuclei (SCN) transmit signals to the rest of the brain, organizing circadian rhythms throughout the body. Transplants of the SCN restore circadian activity rhythms to animals whose own SCN have been ablated. The nature of the coupling signal from the grafted SCN to the host brain is not known, although it has been presumed that(More)