Learn More
De novo proteins provide a unique opportunity to investigate the structure-function relationships of metalloproteins in a minimal, well-defined and controlled scaffold. Here, we describe the rational programming of function in a de novo designed di-iron carboxylate protein from the Due Ferri family. Originally created to catalyse the O(2)-dependent,(More)
DFsc (single-chain due ferri) proteins allow for modeling binuclear non-heme iron enzymes with a similar fold. Three 4A → 4G variants of DFsc were studied to investigate the effects of (1) increasing the size of the substrate/solvent access channel (G4DFsc), (2) including an additional His residue in the first coordination sphere along with three additional(More)
myo-Inositol oxygenase (MIOX) catalyzes the 4e(-) oxidation of myo-inositol (MI) to D-glucuronate using a substrate activated Fe(II)Fe(III) site. The biferrous and Fe(II)Fe(III) forms of MIOX were studied with circular dichroism (CD), magnetic circular dichroism (MCD), and variable temperature variable field (VTVH) MCD spectroscopies. The MCD spectrum of(More)
Molecules of the general form Tp*MoO(OR)(2) [where Tp* = hydrotris(3,5-dimethyl-1-pyrazolyl)borate and (OR)(2) = (OMe)(2), (OEt)(2), and (O(n)Pr)(2) for alkoxide ligands and (OR)(2) = O(CH(2))(3)O, O(CH(2))(4)O, and O[CH(CH(3))CH(2)CH(CH(3))]O for diolato ligands] were studied using gas-phase photoelectron spectroscopy, cyclic voltammetry, and density(More)
The tris(pyrazolyl)borate and related tripodal N-donor ligands originally developed by Trofimenko stabilize mononuclear compounds containing Mo(VI)O(2), Mo(VI)O, Mo(V)O, and Mo(IV)O units and effectively inhibit their polynucleation in organic solvents. Dioxo-Mo(VI) complexes of the type LMoO(2)(SPh), where L = hydrotris(3,5-dimethylpyrazol-1-yl)borate(More)
Using the single-chain due ferri (DFsc) peptide scaffold, the differential oxidase and oxygenase reactivities of two 4A→4G variants, one with two histidines at the diiron center (G4DFsc) and the other with three histidines (3His-G4DFsc(Mut3)), are explored. By controlling the reaction conditions, the active form responsible for 4-aminophenol (4-AP) oxidase(More)
  • 1