#### Filter Results:

- Full text PDF available (15)

#### Publication Year

2011

2017

- This year (5)
- Last 5 years (20)
- Last 10 years (21)

#### Publication Type

#### Co-author

#### Journals and Conferences

#### Key Phrases

Learn More

- Radu Curticapean
- ICALP
- 2013

We prove #W[1]-hardness of the following parameterized counting problem: Given a simple undirected graph G and a parameter k ∈ N, compute the number of matchings of size k in G. It is known from [1] that, given an edge-weighted graph G, computing a particular weighted sum over the matchings in G is #W[1]-hard. In the present paper, we exhibit a reduction… (More)

- Radu Curticapean, Dániel Marx
- 2014 IEEE 55th Annual Symposium on Foundations of…
- 2014

For a class C of graphs, #Sub(C) is the counting problem that, given a graph H from C and an arbitrary graph G, asks for the number of subgraphs of G isomorphic to H. It is known that if C has bounded vertex-cover number (equivalently, the size of the maximum matching in C is bounded), then #Sub(C) is polynomial-time solvable. We complement this result with… (More)

- Markus Bläser, Radu Curticapean
- IPEC
- 2012

- Radu Curticapean, Holger Dell, Dániel Marx
- STOC
- 2017

We introduce <em>graph motif parameters</em>, a class of graph parameters that depend only on the frequencies of constant-size induced subgraphs. Classical works by LovÃ¡sz show that many interesting quantities have this form, including, for fixed graphsÂ <i>H</i>, the number of <i>H</i>-copies (induced or not) in an input graphÂ <i>G</i>, and the number of… (More)

- Radu Curticapean
- ICALP
- 2016

Given an edge-weighted graph G, let PerfMatch(G) denote the weighted sum over all perfect matchings M in G, weighting each matching M by the product of weights of edges in M. If G is unweighted, this plainly counts the perfect matchings of G. In this paper, we introduce parity separation, a new method for reducing PerfMatch to unweighted instances: For… (More)

- Radu Curticapean
- ICALP
- 2015

We devise a framework for proving tight lower bounds under the counting exponential-time hypothesis #ETH introduced by Dell et al. (ACM Transactions on Algorithms, 2014). Our framework allows us to convert classical #P-hardness results for counting problems into tight lower bounds under #ETH, thus ruling out algorithms with running time 2o(n) on graphs with… (More)

- Ivona Bezáková, Radu Curticapean, Holger Dell, Fedor V. Fomin
- ICALP
- 2017

We consider the following natural “above guarantee” parameterization of the classical Longest Path problem: For given vertices s and t of a graph G, and an integer k, the problem Longest Detour asks for an (s, t)-path in G that is at least k longer than a shortest (s, t)-path. Using insights into structural graph theory, we prove that Longest Detour is… (More)

The problem of (approximately) counting the independent sets of a bipartite graph (#BIS) is the canonical approximate counting problem that is complete in the intermediate complexity class #RHΠ1. It is believed that #BIS does not have an efficient approximation algorithm but also that it is not NP-hard. We study the robustness of the intermediate complexity… (More)

- Victor Alvarez, Karl Bringmann, Radu Curticapean, Saurabh Ray
- Symposium on Computational Geometry
- 2012

Let P be a set of $n$ points in the plane. A crossing-free structure on P is a straight-edge planar graph with vertex set in P. Examples of crossing-free structures include triangulations of P, and spanning cycles of P, also known as polygonalizations of P, among others. There has been a large amount of research trying to bound the number of such… (More)

- Radu Curticapean
- Bulletin of the EATCS
- 2015