Radosław Kamiński

Learn More
The heavy ion trap facility (HITRAP), which is shown in fig.1 and is being built in the re-injection channel between ESR and SIS will provide unique beams of highly charged ions up to bare uranium at very low energies for a large variety of experiments. At the HITRAP facility the ions, produced by the GSI accelerator facility, will be decelerated in two(More)
We complete and improve the fits to experimental ππ scattering amplitudes , both at low and high energies, that we performed in the previous papers of this series. We then verify that the corresponding amplitudes satisfy analyticity requirements, in the form of partial wave analyticity at low energies, forward dispersion relations (FDR) at all energies, and(More)
The harmonic model of atomic nuclear motions is usually enough for multipole modelling of high-resolution X-ray diffraction data; however, in some molecular crystals, such as 1-(2'-aminophenyl)-2-methyl-4-nitro-1H-imidazole [Paul, Kubicki, Jelsch et al. (2011 ▶). Acta Cryst. B67, 365-378], it may not be sufficient for a correct description of the(More)
We review results of an analysis of ππ interactions in S, P and D waves for two-pion effective mass from threshold to about 1.4 GeV. In particular we show a recent improvement of this analysis above the K ¯ K threshold using more data for phase shifts and including the S0 wave inelasticity from ππ → K ¯ K. In addition, we have improved the fit to the(More)
The heavy ion trap facility (HITRAP) (fig.1) will provide unique beams of highly charged ions up to bare U at very low energies for a large variety of experiments. HITRAP will decelerate ions (e.g. U 91+) produced by the GSI accelerator facility at relativistic energies. The ions are first decelerated the ESR down to 4 MeV/u and further decelerated down to(More)
  • 1