Radosław Chrapkiewicz

  • Citations Per Year
Learn More
We present a method for spatially resolved multiphoton counting based on an intensified camera with the retrieval of multimode photon statistics fully accounting for nonlinearities in the detection process. The scheme relies on one-time quantum tomographic calibration of the detector. Faithful, high-fidelity reconstruction of single- and two-mode statistics(More)
We present an experimental demonstration of the Hamiltonian manipulation in light-atom interface in Raman-type warm rubidium-87 vapor atomic memory. By adjusting the detuning of the driving beam we varied the relative contributions of the Stokes and anti-Stokes scattering to the process of four-wave mixing which reads out a spatially multimode state of(More)
We report the first observation of Hong-Ou-Mandel (HOM) interference of highly indistinguishable photon pairs with spatial resolution. Direct imaging of two-photon coalescence with an intensified sCMOS camera system clearly reveals spatially separated photons appearing pairwise within one of the two modes. With the use of the camera system, we quantified(More)
We experimentally demonstrate an angularly multiplexed holographic memory capable of intrinsic generation, storage, and retrieval of multiple photons, based on an off-resonant Raman interaction in warm rubidium-87 vapors. The memory capacity of up to 60 independent atomic spin-wave modes is evidenced by analyzing angular distributions of coincidences(More)
Warm atomic vapor quantum memories are simple and robust, yet suffer from a number of parasitic processes which produce excess noise. For operating in a single-photon regime precise filtering of the output light is essential. Here, we report a combination of magnetically tuned absorption and Faraday filters, both light-direction insensitive, which stop the(More)
We apply collective Raman scattering to create, store and retrieve spatially multimode light in warm rubidium-87 vapors. The light is created in a spontaneous Stokes scattering process. This is accompanied by the creation of counterpart collective excitations in the atomic ensemble - the spin waves. After a certain storage time we coherently convert the(More)
Quantum metrology overcomes standard precision limits by exploiting collective quantum superpositions of physical systems used for sensing, with the prominent example of non-classical multiphoton states improving interferometric techniques. Practical quantum-enhanced interferometry is, however, vulnerable to imperfections such as partial distinguishability(More)
  • 1