Learn More
We present computational approaches for optimizing beam angles and fluence maps in Intensity Modulated Radiation Therapy (IMRT) planning. We assume that the number of angles to be used for the treatment is given by the treatment planner. A mixed integer programming (MIP) model and a linear programming (LP) model are used to find an optimal set of beam(More)
Four-dimensional (4D) radiotherapy is the explicit inclusion of the temporal changes in anatomy during the imaging, planning, and delivery of radiotherapy. One key component of 4D radiotherapy planning is the ability to automatically ("auto") create contours on all of the respiratory phase computed tomography (CT) datasets comprising a 4D CT scan, based on(More)
The aim of this work was to quantify the ability to predict intrafraction diaphragm motion from an external respiration signal during a course of radiotherapy. The data obtained included diaphragm motion traces from 63 fluoroscopic lung procedures for 5 patients, acquired simultaneously with respiratory motion signals (an infrared camera-based system was(More)
PURPOSE To analyze three-dimensional setup uncertainties for multiple regions of interest (ROIs) in head-and-neck region. METHODS AND MATERIALS In-room computed tomography (CT) scans were acquired using a CT-on-rails system for 14 patients. Three separate bony ROIs were defined: C2 and C6 vertebral bodies and the palatine process of the maxilla.(More)
A new integrated CT/LINAC combination, in which the CT scanner is inside the radiation therapy treatment room and the same patient couch is used for CT scanning and treatment (after a 180-degree couch rotation), should allow for accurate correction of interfractional setup errors. The purpose of this study was to evaluate the sources of uncertainties, and(More)
Respiration can cause tumors in the thorax or abdomen to move by as much as 3 cm; this movement can adversely affect the planning and delivery of radiation treatment. Several techniques have been used to compensate for respiratory motion, but all have shortcomings. Manufacturers of computed tomography (CT) equipment have recently used a technique developed(More)
Four-dimensional (4D) radiotherapy is the explicit inclusion of the temporal changes in anatomy during the imaging, planning and delivery of radiotherapy. Temporal anatomic changes can occur for many reasons, though the focus of the current investigation was respiration motion for lung tumours. The aims of the current research were first to develop a 4D(More)
During radiotherapy treatment planning, the margins given to the clinical target volume to form the planning target volume accounts for internal motion and set-up error. Most margin formulas assume that the underlying distributions are independent and normal. Clinical data suggests that the set-up error probability density function (pdf) can be considered(More)
In this study the dosimetric characteristics of 120-leaf multileaf collimators (MLCs) were evaluated for 6-MV and 18-MV photon beams. The dose rate, percentage depth dose, surface dose, dose in the build-up region, beam profile, flatness, symmetry, and penumbra width were measured using three field-defining methods: (i) 'Jaw only', (ii) 'MLC only', and(More)
The physical properties of particles used in radiation therapy, such as protons, have been well characterized, and their dose distributions are superior to photon-based treatments. However, proton therapy may also have inherent biologic advantages that have not been capitalized on. Unlike photon beams, the linear energy transfer (LET) and hence biologic(More)