Learn More
PURPOSE Many patients receiving fractionated radiotherapy (RT) for head-and-neck cancer have marked anatomic changes during their course of treatment, including shrinking of the primary tumor or nodal masses, resolving postoperative changes/edema, and changes in overall body habitus/weight loss. We conducted a pilot study to quantify the magnitude of these(More)
A greyscale-based fully automatic deformable image registration algorithm, originally known as the 'demons' algorithm, was implemented for CT image-guided radiotherapy. We accelerated the algorithm by introducing an 'active force' along with an adaptive force strength adjustment during the iterative process. These improvements led to a 40% speed improvement(More)
For accurate three-dimensional treatment planning, new models of dose calculations are being developed which require the knowledge of the energy spectra and angular distributions of the photons incident on the surface of the patient. Knowledge of the spectra is also useful in other applications, including the design of filters and beam modifying devices and(More)
PURPOSE The dose distributions of intensity-modulated radiotherapy (IMRT) treatment plans can be shown to be significantly superior in terms of higher conformality if designed to simultaneously deliver high dose to the primary disease and lower dose to the subclinical disease or electively treated regions. We use the term "simultaneous integrated boost"(More)
PURPOSE The equivalent uniform dose (EUD) for tumors is defined as the biologically equivalent dose that, if given uniformly, will lead to the same cell kill in the tumor volume as the actual nonuniform dose distribution. Recently, a new formulation of EUD was introduced that applies to normal tissues as well. EUD can be a useful end point in evaluating(More)
PURPOSE Conventional radiotherapy for cancers of the head and neck (HN) can yield acceptable locoregional tumor control rates, but toxicity of many normal tissues limits our ability to escalate dose. Xerostomia represents one of the most common complications. The purpose of this study is to investigate the potential of intensity-modulated radiotherapy(More)
Four-dimensional (4D) methods strive to achieve highly conformal radiotherapy, particularly for lung and breast tumours, in the presence of respiratory-induced motion of tumours and normal tissues. Four-dimensional radiotherapy accounts for respiratory motion during imaging, planning and radiation delivery, and requires a 4D CT image in which the internal(More)
UNLABELLED Attenuation correction (AC) of PET images with helical CT (HCT) in PET/CT matches only the spatial resolution of CT and PET, not the temporal resolution. We therefore proposed the use of respiration-averaged CT (ACT) to match the temporal resolution of CT and PET and evaluated the improvement of tumor quantification in PET images of the thorax(More)
PURPOSE To clarify the relationship between the percentage of lung receiving low radiation doses with concurrent chemotherapy and the occurrence of postoperative pulmonary complications in the treatment of esophageal carcinoma. METHODS From 117 patients who underwent preoperative chemoradiation for esophageal cancer at our institution between 1998 and(More)
PURPOSE To perform a Phase I radiation dose-escalation trial to determine the maximal tolerable dose (MTD) deliverable to the gross tumor volume (GTV) using an accelerated fractionation with simultaneous integrated boost intensity-modulated radiotherapy regimen with parotid gland sparing as the sole therapy in the treatment of locally advanced head-and-neck(More)