Learn More
In this mini-review, we analyze the influence of cysteines in the structure and activity of mitochondrial outer membrane mammalian VDAC isoforms. The three VDAC isoforms show conserved sequences, similar structures and the same gene organization. The meaning of three proteins encoded in different chromosomes must thus be searched for subtle differences at(More)
Delineating the kinetic and thermodynamic factors which contribute to the stability of transmembrane β-barrels is critical to gain an in-depth understanding of membrane protein behavior. Human mitochondrial voltage-dependent anion channel isoform 2 (hVDAC-2), one of the key anti-apoptotic eukaryotic β-barrel proteins, is of paramount importance, owing to(More)
Lipid-protein interactions, critical for the folding, stability and function of membrane proteins, can be both of mechanical and chemical nature. Mechanical properties of lipid systems can be suitably influenced by physical factors so as to facilitate membrane protein folding. We demonstrate here that by modulating lipid dynamics transiently using heat,(More)
PagP is an eight-stranded transmembrane β-barrel enzyme indispensable for lipid A palmitoylation in Gram-negative bacteria. The severity of infection by pathogens, including Salmonella, Legionella, and Bordetella, and resistance to antimicrobial peptides, relies on lipid A remodeling by PagP, rendering PagP a sought-after drug target. Despite a conserved(More)
Human mitochondrial voltage-dependent anion channel 2 (hVDAC-2), the most predominant isoform seen in brain mitochondria, is not only crucial for cell survival but is also implicated in Alzheimer disease. The abundance of cysteines in this isoform is particularly fascinating, as hVDAC-1 cysteines have no associated functional role. We report a detailed(More)
The voltage-dependent anion channels (VDACs) are the workforce of mitochondrial transport and as such are required for cellular metabolism. The elaborate interplay between mitochondria and the apoptotic pathway supports a role for VDACs as a major regulator of cell death. Although VDAC-1 has an established role in apoptosis and cell homeostasis, the role of(More)
Human voltage-dependent anion channel-2 (hVDAC-2) functions primarily as the crucial anti-apoptotic protein in the outer mitochondrial membrane, and additionally as a gated bidirectional metabolite transporter. The N-terminal helix (NTH), involved in voltage sensing, bears an additional 11-residue extension (NTE) only in hVDAC-2. In this study, we assign a(More)
With increasing structural information on proteins, the opportunity to understand physical forces governing protein folding is also expanding. One of the significant non-covalent forces between the protein side chains is aromatic-aromatic interactions. Aromatic interactions have been widely exploited and thoroughly investigated in the context of folding,(More)
The anti-apoptotic 19-stranded transmembrane human voltage dependent anion channel isoform 2 (hVDAC-2) β-barrel stability is crucial for anion transport in mitochondria. The role of the unusually high number of cysteine residues in this isoform is poorly understood. Using a Cys-less construct of hVDAC-2, we have investigated the contribution of cysteines to(More)
Defining the span of the transmembrane region, a key requirement to ensure correct folding, stability and function of bacterial outer membrane β-barrels, is assisted by the amphipathic property of tryptophan. We demonstrate the unique and distinctive properties of the interface Trp76 and Trp140 of outer membrane protein X, and map their positional relevance(More)