Learn More
We present a method to efficiently simulate coronary perfusion in subject-specific models of the heart within clinically relevant time frames. Perfusion is modelled as a Darcy porous-media flow, where the permeability tensor is derived from homogenization of an explicit anatomical representation of the vasculature. To account for the disparity in length(More)
Experimental data and advanced imaging techniques are increasingly enabling the extraction of detailed vascular anatomy from biological tissues. Incorporation of anatomical data within perfusion models is non-trivial, due to heterogeneous vessel density and disparate radii scales. Furthermore, previous idealised networks have assumed a spatially repeating(More)
  • 1