Learn More
Direct reprogramming of adult fibroblasts to a pluripotent state has opened new possibilities for the generation of patient- and disease-specific stem cells. However the ability of induced pluripotent stem (iPS) cells to generate tissue that mediates functional repair has been demonstrated in very few animal models of disease to date. Here we present the(More)
Duchenne muscular dystrophy is a progressive and incurable neuromuscular disease caused by genetic and biochemical defects of the dystrophin-glycoprotein complex. Here we show the regenerative potential of myogenic progenitors derived from corrected dystrophic induced pluripotent stem cells generated from fibroblasts of mice lacking both dystrophin and(More)
Muscular dystrophies (MDs) consist of a genetically heterogeneous group of disorders, recessive or dominant, characterized by progressive skeletal muscle weakening. To date, no effective treatment is available. Experimental strategies pursuing muscle regeneration through the transplantation of stem cell preparations have brought hope to patients affected by(More)
RATIONALE several studies demonstrate that hematopoietic tissues are a source of endothelial progenitor cells, which contribute to newly formed blood vessels during tissue repair in adults. However, it is not clear which cell type in these hematopoietic tissues gives rise to endothelial progenitor cells. OBJECTIVE to identity the origin of endothelial(More)
Human iPS cells hold great promise for disease modeling and treatment of degenerative disorders including muscular dystrophies. Although a few research groups have used them for skeletal muscle differentiation, most were based on gene over-expression or long-term mesenchymal differentiation and retrospective identification of myogenic cells. Therefore, this(More)
Pluripotent stem cells [1,2] are well-known for their unique self-renewal and differentiation capabilities, which make these cells very favorable for cell-based therapeutic applications in degenerative disorders such as muscular dystrophies. Major concerns associated with embryonic stem (ES) cells, such as immunological compatibility and ethical(More)
Satellite cells (SCs) are indispensable for muscle regeneration and repair; however, due to low frequency in primary muscle and loss of engraftment potential after ex vivo expansion, their use in cell therapy is currently unfeasible. To date, an alternative to this limitation has been the transplantation of SC-derived myogenic progenitor cells (MPCs),(More)
  • 1