Learn More
he asymmetric division of Drosophila neuroblasts involves the basal localization of cell fate determinants and the generation of an asymmetric, apicobasally oriented mitotic spindle that leads to the formation of two daughter cells of unequal size. These features are thought to be controlled by an apically localized protein complex comprising of two(More)
Heterotrimeric G proteins mediate asymmetric division of Drosophila neuroblasts. Free Gbetagamma appears to be crucial for the generation of an asymmetric mitotic spindle and consequently daughter cells of distinct size. However, how Gbetagamma is released from the inactive heterotrimer remains unclear. Here we show that Locomotion defects (Loco) interacts(More)
The asymmetric division of Drosophila neuroblasts involves the basal localization of cell fate determinants and the generation of an asymmetric, apicobasally oriented mitotic spindle that leads to the formation of two daughter cells of unequal size. These features are thought to be controlled by an apically localized protein complex comprising of two(More)
Mammalian LGN/AGS3 proteins and their Drosophila Pins orthologue are cytoplasmic regulators of G-protein signaling. In Drosophila, Pins localizes to the lateral cortex of polarized epithelial cells and to the apical cortex of neuroblasts where it plays important roles in their asymmetric division. Using overexpression studies in different cell line systems,(More)
Asymmetric cell division is a fundamental mechanism used to generate cellular diversity in invertebrates and vertebrates. In Drosophila, asymmetric division of neuroblasts is achieved by the asymmetric segregation of cell fate determinants Prospero and Numb into the basal daughter cell. Asymmetric segregation of cell fate determinants requires an apically(More)
  • 1