Rachid Tazi-Ahnini

Learn More
To identify new susceptibility loci for psoriasis, we undertook a genome-wide association study of 594,224 SNPs in 2,622 individuals with psoriasis and 5,667 controls. We identified associations at eight previously unreported genomic loci. Seven loci harbored genes with recognized immune functions (IL28RA, REL, IFIH1, ERAP1, TRAF3IP2, NFKBIA and TYK2).(More)
Atopic dermatitis (AD) is a multifactorial, heterogenous disease that arises as a result of the interaction between both environmental and genetic factors. Changes in at least three groups of genes encoding structural proteins, epidermal proteases, and protease inhibitors predispose to a defective epidermal barrier and increase the risk of developing AD.(More)
To gain further insight into the genetic architecture of psoriasis, we conducted a meta-analysis of 3 genome-wide association studies (GWAS) and 2 independent data sets genotyped on the Immunochip, including 10,588 cases and 22,806 controls. We identified 15 new susceptibility loci, increasing to 36 the number associated with psoriasis in European(More)
A map of the SLA complex, or swine major histocompatibility complex (MHC), class I region was constructed by alignment of yeast artificial chromosomes (YACs) harboring MHC class I genes as well as anchor genes already mapped within the human MHC complex (HLA). Five YACs containing 9 anchor genes built a contig of about 1.0-1.2 Mb between the SLA class III(More)
Atopic dermatitis (AD) is a multifactorial, chronic inflammatory skin disorder in which genetic mutations and cutaneous hyperreactivity to environmental stimuli play a causative role. Genetic mutations alone might not be enough to cause clinical manifestations of AD, and this review will propose a new perspective on the importance of epidermal barrier(More)
Alopecia areata is characterized by a reversible form of patchy or complete hair loss associated with T-cell infiltration of hair follicles. The lifetime disease risk of approximately 1.4% in the general population is increased to more than 30% in autoimmune polyendocrinopathy candidiasis ectodermal dysplasia syndrome (APECED), a recessive condition(More)
 New members of the butyrophilin (BT) gene family have been identified by cDNA and genomic cloning. Six genes are described: BT2.1, 2.2, 2.3, and BT3.1, 3.2, and 3.3. BT2, BT3, and BT form three distinct subfamilies sharing about 95% amino acid identity at the intra subfamily level and 50% identity at the interfamily level. All the BT2 and BT3 subfamily(More)
Alopecia areata is an immune-mediated disorder, occurring with the highest observed frequency in the rare recessive autoimmune polyendocrinopathy-candidiasis-ectodermal dystrophy (APECED) syndrome caused by mutations of the autoimmune regulator (AIRE) gene on chromosome 21q22.3. We have previously detected association between alopecia areata and a single(More)
 We present the cloning, structural analysis, and mapping of new members belonging to two multigenic families, the B30-RING finger family and the B7.1-B7.2 family, as well as two genes derived by exon shuffling from members of these families. Eight new members were found and three of them map to the human major histocompatibilitiy complex (MHC) region.(More)
Mapping of disease susceptibility loci within the MHC has been partly hampered by the high degree of polymorphism of the HLA genes and the high level of linkage disequilibrium (LD) between markers within the MHC region. It is therefore important to identify new markers and determine the level of LD between HLA alleles and non-HLA genes. The NOTCH4 gene lies(More)