Rachel S. G. Sealfon

Learn More
In its largest outbreak, Ebola virus disease is spreading through Guinea, Liberia, Sierra Leone, and Nigeria. We sequenced 99 Ebola virus genomes from 78 patients in Sierra Leone to ~2000× coverage. We observed a rapid accumulation of interhost and intrahost genetic variation, allowing us to characterize patterns of viral transmission over the initial weeks(More)
To gain insight into how genomic information is translated into cellular and developmental programs, the Drosophila model organism Encyclopedia of DNA Elements (modENCODE) project is comprehensively mapping transcripts, histone modifications, chromosomal proteins, transcription factors, replication proteins and intermediates, and nucleosome properties(More)
Systematic annotation of gene regulatory elements is a major challenge in genome science. Direct mapping of chromatin modification marks and transcriptional factor binding sites genome-wide has successfully identified specific subtypes of regulatory elements. In Drosophila several pioneering studies have provided genome-wide identification of Polycomb(More)
BACKGROUND Limited clinical and laboratory data are available on patients with Ebola virus disease (EVD). The Kenema Government Hospital in Sierra Leone, which had an existing infrastructure for research regarding viral hemorrhagic fever, has received and cared for patients with EVD since the beginning of the outbreak in Sierra Leone in May 2014. METHODS(More)
The Gene Ontology has become an extremely useful tool for the analysis of genomic data and structuring of biological knowledge. Several excellent software tools for navigating the gene ontology have been developed. However, no existing system provides an interactively expandable graph-based view of the gene ontology hierarchy. Furthermore, most existing(More)
In 2014, Ebola virus (EBOV) was identified as the etiological agent of a large and still expanding outbreak of Ebola virus disease (EVD) in West Africa and a much more confined EVD outbreak in Middle Africa. Epidemiological and evolutionary analyses confirmed that all cases of both outbreaks are connected to a single introduction each of EBOV into human(More)
The increasing availability of sequence data for many viruses provides power to detect regions under unusual evolutionary constraint at a high resolution. One approach leverages the synonymous substitution rate as a signature to pinpoint genic regions encoding overlapping or embedded functional elements. Protein-coding regions in viral genomes often contain(More)
Gytis Dudas1,2, ∗ , Luiz Max Carvalho1, Trevor Bedford2, Andrew J. Tatem3,4, Guy Baele5, Nuno Faria6, Daniel J. Park7, Jason Ladner8, Armando Arias9,10, Danny Asogun11,12, Filip Bielejec5, Sarah Caddy9, Matt Cotten13, Jonathan Dambrozio8, Simon Dellicour5, Antonino Di Caro14,12, Joseph W. Diclaro II15, Sophie Duraffour16,12, Mike Elmore17, Lawrence(More)
Sequence determination of complete or coding-complete genomes of viruses is becoming common practice for supporting the work of epidemiologists, ecologists, virologists, and taxonomists. Sequencing duration and costs are rapidly decreasing, sequencing hardware is under modification for use by non-experts, and software is constantly being improved to(More)
Until recently, Ebola virus (EBOV) was a rarely encountered human pathogen that caused disease among small populations with extraordinarily high lethality. At the end of 2013, EBOV initiated an unprecedented disease outbreak in West Africa that is still ongoing and has already caused thousands of deaths. Recent studies revealed the genomic changes this(More)