Rachel P. Manassa

Learn More
Ocean acidification is predicted to affect marine ecosystems in many ways, including modification of fish behaviour. Previous studies have identified effects of CO(2)-enriched conditions on the sensory behaviour of fishes, including the loss of natural responses to odours resulting in ecologically deleterious decisions. Many fishes also rely on hearing for(More)
Ocean acidification has the potential to cause dramatic changes in marine ecosystems. Larval damselfish exposed to concentrations of CO(2) predicted to occur in the mid- to late-century show maladaptive responses to predator cues. However, there is considerable variation both within and between species in CO(2) effects, whereby some individuals are(More)
Assessment of predation risk is vital for the success of an individual. Primary cues for the assessment include visual and olfactory stimuli, but the relative importance of these sources of information for risk assessment has seldom been assessed for marine fishes. This study examined the importance of visual and chemical cues in assessing risk for the star(More)
Prey that are capable of continuously learning the identity of new predators whilst adjusting the intensity of their responses to match their level of risk, are often at a substantive advantage. Learning about predators can occur through direct experience or through social learning from experienced individuals. Social learning provides individuals with an(More)
Predation is known to influence the distribution of behavioural traits among prey individuals, populations and communities over both evolutionary and ecological time scales. Prey have evolved mechanisms of rapidly learning the identity of predators. Chemical cues are often used by prey to assess predation risk especially in aquatic systems where visual cues(More)
During settlement, one of the main threats faced by individuals relates to their ability to detect and avoid predators. Information on predator identities can be gained either through direct experience or from the observation and/or interaction with others, a process known as social learning. In this form of predator recognition, less experienced(More)
Social animals acquire information on predator identities through social learning, where individuals with no prior experience learn from experienced members of the group. However, a large amount of uncertainty is often associated with socially acquired information especially in cases of cross-species learning. Theory predicts that socially acquired(More)
The ability of prey to observe and learn to recognize potential predators from the behaviour of nearby individuals can dramatically increase survival and, not surprisingly, is widespread across animal taxa. A range of sensory modalities are available for this learning, with visual and chemical cues being well-established modes of transmission in aquatic(More)
  • 1