Rachel M. Ndonye

Learn More
Valpha14i natural killer T (NKT)-cell function has been implicated in a number of disease conditions. The molecular events that drive Valpha14i NKT-cell development remain elusive. We recently showed that T-bet is required for the terminal maturation of these cells. Here we identify some of the genetic targets of T-bet during Valpha14i NKT-cell lineage(More)
Natural killer T (NKT) cells are a subset of T lymphocytes with potent immunoregulatory properties. Recognition of self-antigens presented by CD1d molecules is an important route of NKT cell activation; however, the molecular identity of specific autoantigens that stimulate human NKT cells remains unclear. Here, we have analyzed human NKT cell recognition(More)
CD1d-restricted natural killer T cells (NKT cells) possess a wide range of effector and regulatory activities that are related to their ability to secrete both T helper 1 (Th1) cell- and Th2 cell-type cytokines. We analyzed presentation of NKT cell activating alpha galactosylceramide (alphaGalCer) analogs that give predominantly Th2 cell-type cytokine(More)
Natural killer T (NKT) cells are innate-like T cells that recognize specific microbial antigens and also display autoreactivity to self-antigens. The nature of NKT-cell autoreactive activation remains poorly understood. We show here that the mitogen-activated protein kinase (MAPK) pathway is operative during human NKT-cell autoreactive activation, but(More)
Activation of CD1d-restricted invariant NKT (iNKT) cells by alpha-galactosylceramide (alphaGalCer) significantly suppresses development of diabetes in NOD mice. The mechanisms of this protective effect are complex, involving both Th1 and Th2 cytokines and a network of regulatory cells including tolerogenic dendritic cells. In the current study, we evaluated(More)
Two 60+-membered libraries of alpha-galactosylceramides have been prepared by reactions between activated ester resins and two core, fully deprotected galactosylated sphingoid bases. The libraries were evaluated for their ability to stimulate CD1d-restricted NKT cells, using in vitro stimulation of a murine NKT cell hybridoma line and for their ability to(More)
The alpha-galactosylceramide (alpha-GalCer) known as KRN7000 remains the best studied ligand of the lipid-binding MHC class I-like protein CD1d. The KRN7000:CD1d complex is highly recognized by invariant natural killer T (iNKT) cells, an evolutionarily conserved subset of T lymphocytes that express an unusual semi-invariant T cell antigen receptor, and(More)
The development of autoimmune diseases is frequently linked to exposure to environmental factors such as chemicals, drugs, or infections. In the experimental model of metal-induced autoimmunity, administration of subtoxic doses of mercury (a common environmental pollutant) to genetically susceptible mice induces an autoimmune syndrome with rapid(More)
Structural variants of α-galactosylceramide (αGC) that activate invariant natural killer T cells (iNKT cells) are being developed as potential immunomodulatory agents for a variety of applications. Identification of specific forms of these glycolipids that bias responses to favor production of proinflammatory vs anti-inflammatory cytokines is central to(More)
V 14i natural killer T (NKT)–cell function has been implicated in a number of disease conditions. The molecular events that drive V 14i NKT-cell development remain elusive. We recently showed that T-bet is required for the terminal maturation of these cells. Here we identify some of the genetic targets of T-bet during V 14i NKT-cell lineage development.(More)