Learn More
Mammalian cells employ numerous innate cellular mechanisms to inhibit viral replication and spread. Tetherin, also known as Bst-2 or CD317, is a recently identified, IFN-induced, cellular response factor that blocks release of HIV-1 and other retroviruses from infected cells. The means by which tetherin retains retroviruses on the cell surface, as well as(More)
Reduced insulin/IGF-1-like signaling (IIS) extends C. elegans lifespan by upregulating stress response (class I) and downregulating other (class II) genes through a mechanism that depends on the conserved transcription factor DAF-16/FOXO. By integrating genome-wide mRNA expression responsiveness to DAF-16 with genome-wide in vivo binding data for a(More)
Human Immunodeficiency Virus Type 1 (HIV-1) establishes a latent reservoir early in infection that is resistant to the host immune response and treatment with highly active antiretroviral therapy (HAART). The best understood of these reservoirs forms in resting CD4(+) T cells. While it remains unclear how reservoirs form, a popular model holds that the(More)
Cellular cathepsins are required for Ebola virus infection and are believed to proteolytically process the Ebola virus glycoprotein (GP) during entry. However, the significance of cathepsin cleavage during infection remains unclear. Here we demonstrate a role for cathepsin L (CatL) cleavage of Ebola virus GP in the generation of a stable 18-kDa GP1 viral(More)
Induced CREB activity is a hallmark of long-term memory, but the full repertoire of CREB transcriptional targets required specifically for memory is not known in any system. To obtain a more complete picture of the mechanisms involved in memory, we combined memory training with genome-wide transcriptional analysis of C. elegans CREB mutants. This approach(More)
Cilia and extracellular vesicles (EVs) are signaling organelles [1]. Cilia act as cellular sensory antennae, with defects resulting in human ciliopathies. Cilia both release and bind to EVs [1]. EVs are sub-micron-sized particles released by cells and function in both short- and long-range intercellular communication. In C. elegans and mammals, the(More)
Aging is characterized by general physiological decline over time. A hallmark of human senescence is the onset of various age-related afflictions including neurodegeneration, cardiovascular disease and cancer. Although environmental and stochastic factors undoubtedly contribute to the increased incidence of disease with age, recent studies suggest that(More)
The memory of experiences and learned information is critical for organisms to make choices that aid their survival. C. elegans navigates its environment through neuron-specific detection of food and chemical odors, and can associate nutritive states with chemical odors, temperature, and the pathogenicity of a food source. Here, we describe assays of C.(More)
Tetherin is an interferon-induced, intrinsic cellular response factor that blocks release of numerous viruses, including Ebola virus, from infected cells. As with many viruses targeted by host factors, Ebola virus employs a tetherin antagonist, the viral glycoprotein (EboGP), to counteract restriction and promote virus release. Unlike other tetherin(More)
Insulin/insulin-like growth factor signalling (IIS) is a critical regulator of an organism's most important biological decisions from growth, development, and metabolism to reproduction and longevity. It primarily does so through the activity of the DAF-16 transcription factor (forkhead box O (FOXO) homologue), whose global targets were identified in(More)