Rachel Kramer Green

Learn More
The Protein Data Bank (PDB) is the central worldwide repository for three-dimensional (3D) structure data of biological macromolecules. The Research Collaboratory for Structural Bioinformatics (RCSB) has completely redesigned its resource for the distribution and query of 3D structure data. The re-engineered site is currently in public beta test at(More)
The Research Collaboratory for Structural Bioinformatics Protein Data Bank (RCSB PDB) develops tools and resources that provide a structural view of biology for research and education. The RCSB PDB web site (http://www.rcsb.org) uses the curated 3D macromolecular data contained in the PDB archive to offer unique methods to access, report and visualize data.(More)
Peptide bond formation and peptide release are catalyzed in the active site of the large subunit of the ribosome where universally conserved nucleotides surround the CCA ends of the peptidyl- and aminoacyl-tRNA substrates. Here, we describe the use of an affinity-tagging system for the purification of mutant ribosomes and analysis of four universally(More)
Translation elongation factors facilitate protein synthesis by the ribosome. Previous studies identified two universally conserved translation elongation factors, EF-Tu in bacteria (known as eEF1A in eukaryotes) and EF-G (eEF2), which deliver aminoacyl-tRNAs to the ribosome and promote ribosomal translocation, respectively. The factor eIF5A (encoded by HYP2(More)
The RCSB Protein Data Bank (RCSB PDB, http://www.rcsb.org) provides access to 3D structures of biological macromolecules and is one of the leading resources in biology and biomedicine worldwide. Our efforts over the past 2 years focused on enabling a deeper understanding of structural biology and providing new structural views of biology that support both(More)
MicroRNAs (miRNAs) and small interfering RNAs (siRNAs) act with the Argonaute family of proteins to regulate target messenger RNAs (mRNAs) posttranscriptionally. SiRNAs typically induce endonucleolytic cleavage of mRNA with near-perfect complementarity. For targets with less complementarity, both translational repression and mRNA destabilization mechanisms(More)
The ribosome accelerates the rate of peptide bond formation by at least 10(7)-fold, but the catalytic mechanism remains controversial. Here we report evidence that a functional group on one of the tRNA substrates plays an essential catalytic role in the reaction. Substitution of the P-site tRNA A76 2' OH with 2' H or 2' F results in at least a 10(6)-fold(More)
Following peptide-bond formation, the mRNA:tRNA complex must be translocated within the ribosomal cavity before the next aminoacyl tRNA can be accommodated in the A site. Previous studies suggested that following peptide-bond formation and prior to EF-G recognition, the tRNAs occupy an intermediate (hybrid) state of binding where the acceptor ends of the(More)
microRNAs (miRNAs) regulate gene expression through translational repression and/or messenger RNA (mRNA) deadenylation and decay. Because translation, deadenylation, and decay are closely linked processes, it is important to establish their ordering and thus to define the molecular mechanism of silencing. We have investigated the kinetics of these events in(More)
Although the protein synthesis inhibitor cycloheximide (CHX) has been known for decades, its precise mechanism of action remains incompletely understood. The glutarimide portion of CHX is seen in a family of structurally related natural products including migrastatin, isomigrastatin and lactimidomycin (LTM). We found that LTM, isomigrastatin and analogs(More)