Rachel Kathleen Rowe

Learn More
STUDY OBJECTIVE We investigated the relationship between immediate disruption of posttraumatic sleep and functional outcome in the diffuse brain-injured mouse. DESIGN Adult male C57BL/6 mice were subjected to moderate midline fluid percussion injury (n = 65; 1.4 atm; 6-10 min righting reflex time) or sham injury (n = 44). Cohorts received either(More)
Adam D. Bachstetter,1 Rachel K. Rowe,2,3 Machi Kaneko,1 Danielle Goulding,1 Jonathan Lifshitz,4,5,6 and Linda J. Van Eldik1,2,3 1Sanders-Brown Center on Aging, 2Department of Anatomy and Neurobiology, and 3Spinal Cord and Brain Injury Research Center, University of Kentucky, Lexington, Kentucky 40536, 4Barrow Neurological Institute at Phoenix Children’s(More)
Traumatic brain injury (TBI) is induced by mechanical forces which initiate a cascade of secondary injury processes, including inflammation. Therapies which resolve the inflammatory response may promote neural repair without exacerbating the primary injury. Specific derivatives of omega-3 fatty acids loosely grouped as specialized pro-resolving lipid(More)
Neuropathology after traumatic brain injury (TBI) is the result of both the immediate impact injury and secondary injury mechanisms. Unresolved post-traumatic glial activation is a secondary injury mechanism that contributes to a chronic state of neuroinflammation in both animal models of TBI and human head injury patients. We recently demonstrated, using(More)
OBJECTIVE Clinical observations report excessive sleepiness immediately following traumatic brain injury (TBI); however, there is a lack of experimental evidence to support or refute the benefit of sleep following a brain injury. The aim of this study is to investigate acute post-traumatic sleep. METHODS Sham, mild or moderate diffuse TBI was induced by(More)
Valid modeling of traumatic brain injury (TBI) requires accurate replication of both the mechanical forces that cause the primary injury and the conditions that lead to secondary injuries observed in human patients. The use of animals in TBI research is justified by the lack of in vitro or computer models that can sufficiently replicate the complex(More)
Development and aging are influenced by external factors with the potential to impact health throughout the life span. Traumatic brain injury (TBI) can initiate and sustain a lifetime of physical and mental health symptoms. Over 1.7 million TBIs occur annually in the USA alone, with epidemiology suggesting a higher incidence for young age groups.(More)
A myriad of factors influence the developmental and aging process and impact health and life span. Mounting evidence indicates that brain injury, even moderate injury, can lead to lifetime of physical and mental health symptoms. Therefore, the purpose of this mini-review is to discuss how recovery from traumatic brain injury (TBI) depends on age-at-injury(More)
BACKGROUND Nociceptive and neuropathic pain occurs as part of the disease process after traumatic brain injury (TBI) in humans. Central and peripheral inflammation, a major secondary injury process initiated by the traumatic brain injury event, has been implicated in the potentiation of peripheral nociceptive pain. We hypothesized that the inflammatory(More)
PRIMARY OBJECTIVE To test if the current model of diffuse brain injury produces chronic sleep disturbances similar to those reported by TBI patients. METHODS AND PROCEDURES Adult male C57BL/6 mice were subjected to moderate midline fluid percussion injury (n = 7; 1.4 atm; 6-10 minutes righting reflex time) or sham injury (n = 5). Sleep-wake activity was(More)