Rachel Karchin

Learn More
Glioblastoma multiforme (GBM) is the most common and lethal type of brain cancer. To identify the genetic alterations in GBMs, we sequenced 20,661 protein coding genes, determined the presence of amplifications and deletions using high-density oligonucleotide arrays, and performed gene expression analyses using next-generation sequencing technologies in 22(More)
There are currently few therapeutic options for patients with pancreatic cancer, and new insights into the pathogenesis of this lethal disease are urgently needed. Toward this end, we performed a comprehensive genetic analysis of 24 pancreatic cancers. We first determined the sequences of 23,219 transcripts, representing 20,661 protein-coding genes, in(More)
Human cancer is caused by the accumulation of mutations in oncogenes and tumor suppressor genes. To catalog the genetic changes that occur during tumorigenesis, we isolated DNA from 11 breast and 11 colorectal tumors and determined the sequences of the genes in the Reference Sequence database in these samples. Based on analysis of exons representing 20,857(More)
Major efforts to sequence cancer genomes are now occurring throughout the world. Though the emerging data from these studies are illuminating, their reconciliation with epidemiologic and clinical observations poses a major challenge. In the current study, we provide a mathematical model that begins to address this challenge. We model tumors as a discrete(More)
Large-scale sequencing of cancer genomes has uncovered thousands of DNA alterations, but the functional relevance of the majority of these mutations to tumorigenesis is unknown. We have developed a computational method, called Cancer-specific High-throughput Annotation of Somatic Mutations (CHASM), to identify and prioritize those missense mutations most(More)
This article presents an overview of the SAM-T02 method for protein fold recognition and the UNDERTAKER program for ab initio predictions. The SAM-T02 server is an automatic method that uses two-track hidden Markov models (HMMS) to find and align template proteins from PDB to the target protein. The two-track HMMs use an amino acid alphabet and one of(More)
MOTIVATION The NCBI dbSNP database lists over 9 million single nucleotide polymorphisms (SNPs) in the human genome, but currently contains limited annotation information. SNPs that result in amino acid residue changes (nsSNPs) are of critical importance in variation between individuals, including disease and drug sensitivity. RESULTS We have developed(More)
Medulloblastoma (MB) is the most common malignant brain tumor of children. To identify the genetic alterations in this tumor type, we searched for copy number alterations using high-density microarrays and sequenced all known protein-coding genes and microRNA genes using Sanger sequencing in a set of 22 MBs. We found that, on average, each tumor had 11 gene(More)
An important problem in computational biology is predicting the structure of the large number of putative proteins discovered by genome sequencing projects. Fold-recognition methods attempt to solve the problem by relating the target proteins to known structures, searching for template proteins homologous to the target. Remote homologs that may have(More)
This article presents results of blind predictions submitted to the CASP4 protein structure prediction experiment. We made two sets of predictions: one using the fully automated SAM-T99 server and one using the improved SAM-T2K method with human intervention. Both methods use iterative hidden Markov model-based methods for constructing protein family(More)