Rachana Parmar

Learn More
This paper proposes a novel framework for mining regional co-location patterns with respect to sets of continuous variables in spatial datasets. The goal is to identify regions in which multiple continuous variables with values from the wings of their statistical distribution are co-located. A co-location mining framework is introduced that operates in the(More)
This paper presents a novel region discovery framework geared towards finding scientifically interesting places in spatial datasets. We view region discovery as a clustering problem in which an externally given fitness function has to be maximized. The framework adapts four representative clustering algorithms, exemplifying prototype-based, grid-based,(More)
Feature-based hot spots are localized regions where the attributes of objects attain high values. There is considerable interest in automatic identification of feature-based hot spots. This paper approaches the problem of finding feature-based hot spots from a data mining perspective, and describes a method that relies on supervised clustering to produce a(More)
  • 1