Rachael Rutkowski

Learn More
Fos and Jun, the protein products of the nuclear proto-oncogenes c-fos and c-jun, associate preferentially to form a heterodimer that binds to DNA and modulates transcription of a wide variety of genes in response to mitogenic stimuli. Both Fos and Jun contain a single leucine zipper region. Previous studies have shown that the leucine zippers of Fos and(More)
The products of the nuclear oncogenes fos and jun are known to form heterodimers that bind to DNA and modulate transcription. Both proteins contain a leucine zipper that is important for heterodimer formation. Peptides corresponding to these leucine zippers were synthesized. When mixed, these peptides preferentially form heterodimers over homodimers by at(More)
Maintaining genome stability in the germline is thought to be an evolutionarily ancient role of the p53 family. The sole Caenorhabditis elegans p53 family member CEP-1 is required for apoptosis induction in meiotic, late-stage pachytene germ cells in response to DNA damage and meiotic recombination failure. In an unbiased genetic screen for negative(More)
The origin of the p53 superfamily predates animal evolution and first appears in unicellular Flagellates. Invertebrate p53 superfamily members appear to have a p63-like domain structure, which seems to be evolutionarily ancient. The radiation into p53, p63, and p73 proteins is a vertebrate invention. In invertebrate models amenable to genetic analysis p53(More)
Defective catabolite export from lysosomes results in lysosomal storage diseases in humans. Mutations in the cystine transporter gene CTNS cause cystinosis, but other lysosomal amino acid transporters are poorly characterized at the molecular level. Here, we identified the Caenorhabditis elegans lysosomal lysine/arginine transporter LAAT-1. Loss of laat-1(More)
NMR experiments show that a stable complex can be formed between a 14-base-pair oligonucleotide and a disulfide-bonded dimer of a peptide containing 27 residues of the basic region of the yeast transcriptional activator GCN4; the complex is in slow exchange on the NMR time scale. In contrast, a nonspecific complex is in fast exchange on the NMR time scale.(More)
  • 1