Rabea Sandmann

Learn More
Contraction at the cellular level is vital for living organisms. The most prominent type of contractile cells are heart muscle cells, a less-well-known example is blood platelets. Blood platelets activate and interlink at injured blood vessel sites, finally contracting to form a compact blood clot. They are ideal model cells to study the mechanisms of(More)
The rapid reorganization of the actin cytoskeleton in response to external stimuli is an essential property of many motile eukaryotic cells. Here, we report evidence that the actin machinery of chemotactic Dictyostelium cells operates close to an oscillatory instability. When averaging the actin response of many cells to a short pulse of the chemoattractant(More)
Injuries in blood vessels are accompanied by disrupted endothelial cell layers. Missing or destroyed endothelial cells lead to rough, structured surfaces on the micrometer scale. The first cells to arrive at the site of injury and to cover the wound are platelets, which subsequently drive blood clot formation. Therefore, investigating the interactions of(More)
1 Contraction at the cellular level is vital for living organisms. The most prominent type of 2 contractile cells are heart muscle cells, a less well known example are blood platelets. Blood 3 platelets activate and interlink at injured blood vessel sites, finally contracting to form a 4 compact blood clot. They are ideal model cells to study the mechanisms(More)
Blood platelets are instrumental in blood clotting and are thus heavily involved in early wound closure. After adhering to a substrate they spread by forming protrusions like lamellipodia and filopodia. However, the interaction of these protrusions with the physical environment of platelets while spreading is not fully understood. Here we dynamically image(More)